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Canonical Correlation Analysis

LEARNING OBJECTIVES
Upon completing this chapter, you should be able to do the
following:

 State the similarities and differences between multiple regression, factor
analysis, discriminant analysis, and canonical correlation.

 Summarize the conditions that must be met for application of canonical
correlation analysis.

 State what the canonical root measures and point out its limitations.
 State how many independent canonical functions can be defined between the

two sets of original variables.
 Compare the advantages and disadvantages of the three methods for

interpreting the nature of canonical functions.
 Define redundancy and compare it with multiple regression’s R2.

CHAPTER PREVIEW

Until recent years, canonical correlation analysis was a relatively unknown statistical
technique. As with almost all of the multivariate techniques, the availability of
computer programs has facilitated its increased application to research problems. It is
particularly useful in situations in which multiple output measures such as
satisfaction, purchase, or sales volume are available. If the independent variables were
only categorical, multivariate analysis of variance could be used. But what if the
independent variables are metric? Canonical correlation is the answer, allowing for
the assessment of the relationship between metric independent variables and multiple
dependent measures. Canonical correlation is considered to be the general model on
which many other multivariate techniques are based because it can use both metric
and nonmetric data for either the dependent or independent variables. We express the
general form of canonical analysis as

Y1 + Y2 + Y3 + ... + Yn = X1 + X2+ X3 + ... + Xn

(metric, nonmetric) (metric, nonmetric)

This chapter introduces the researcher to the multivariate statistical technique of
canonical correlation analysis. Specifically, we (1) describe the nature of canonical
correlation analysis, (2) illustrate its application, and (3) discuss its potential
advantages and limitations.
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KEY TERMS

Before starting the chapter, review the key terms to develop an understanding of the
concepts and terminology used. Throughout the chapter the key terms appear in
boldface. Other points of emphasis in the chapter are italicized. Also, cross-
references within the Key Terms appear in italics.

Canonical correlation Measure of the strength of the overall relationships between
the linear composites (canonical variates) for the independent and dependent
variables. In effect, it represents the bivariate correlation between the two canonical
variates.

Canonical cross-loadings Correlation of each observed independent or dependent
variable with the opposite canonical variate. For example, the independent
variables are correlated with the dependent canonical variate. They can be
interpreted like canonical loadings, but with the opposite canonical variate.

Canonical function Relationship (correlational) between two linear composites
(canonical variates). Each canonical function has two canonical variates, one for
the set of dependent variables and one for the set of independent variables. The
strength of the relationship is given by the canonical correlation.

Canonical loadings Measure of the simple linear correlation between the
independent variables and their respective canonical variates. These can be
interpreted like factor loadings, and are also known as canonical structure
correlations.

Canonical roots Squared canonical correlations, which provide an estimate of the
amount of shared variance between the respective optimally weighted canonical
variates of dependent and independent variables. Also known as eigenvalues.

Canonical variates Linear combinations that represent the weighted sum of two or
more variables and can be defined for either dependent or independent variables.
Also referred to as linear composites, linear compounds, and linear combinations.

Eigenvalues See canonical roots.
Linear composites See canonical variates.
Orthogonal Mathematical constraint specifying that the canonical functions are

independent of each other. In other words, the canonical functions are derived so
that each is at a right angle to all other functions when plotted in multivariate space,
thus ensuring statistical independence between the canonical functions.

Redundancy index Amount of variance in a canonical variate (dependent or
independent) explained by the other canonical variate in the canonical function. It
can be computed for both the dependent and the independent canonical variates in
each canonical function. For example, a redundancy index of the dependent variate
represents the amount of variance in the dependent variables explained by the
independent canonical variate.
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What Is Canonical Correlation?

Multiple regression analysis is a multivariate technique which can predict the value of
a single (metric) dependent variable from a linear function of a set of independent
variables. For some research problems, however, interest may not center on a single
dependent variable; rather, the researcher may be interested in relationships between
sets of multiple dependent and multiple independent variables. Canonical
correlation analysis is a multivariate statistical model that facilitates the study of
interrelationships among sets of multiple dependent variables and multiple
independent variables [5, 6]. Whereas multiple regression predicts a single dependent
variable from a set of multiple independent variables, canonical correlation
simultaneously predicts multiple dependent variables from multiple independent
variables.

Canonical correlation places the fewest restrictions on the types of data on which it
operates. Because the other techniques impose more rigid restrictions, it is generally
believed that the information obtained from them is of higher quality and may be
presented in a more interpretable manner. For this reason, many researchers view
canonical correlation as a last-ditch effort, to be used when all other higher-level
techniques have been exhausted. But in situations with multiple dependent and
independent variables, canonical correlation is the most appropriate and powerful
multivariate technique. It has gained acceptance in many fields and represents a useful
tool for multivariate analysis, particularly as interest has spread to considering
multiple dependent variables.

Hypothetical Example of Canonical Correlation

To clarify further the nature of canonical correlation, let us consider an extension of a
simple example of multiple regression analysis. Assume that a survey was conducted
to understand the relationships between family size and income as predictors of the
number of credit cards a family would hold. Such a problem would involve
examining the relationship between two independent variables and a single dependent
variable.

Suppose the researcher then became interested in the broader concept of credit
usage. To measure credit usage, the researcher considered not only the number of
credit cards held by the family but also the family’s average monthly dollar charges
on all credit cards. These two measures were felt to give a much better perspective on
a family’s credit card usage. Readers interested in the approach of using multiple
indicators to represent a concept are referred to discussions of Factor Analysis and
Structural Equation Modeling. The problem now involves predicting two dependent
measures simultaneously (number of credit cards and average dollar charges).
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Multiple regression is capable of handling only a single dependent variable.
Multivariate analysis of variance could be used, but only if all of the independent
variables were nonmetric, which is not the case in this problem. Canonical correlation
represents the only technique available for examining the relationship with multiple
dependent variables.

The problem of predicting credit usage is illustrated in Table 8.1. The two
dependent variables used to measure credit usage—number of credit cards held by the
family and average monthly dollar expenditures on all credit cards—are listed at the
left. The two independent variables selected to predict credit usage—family size and
family income—are shown on the right. By using canonical correlation analysis, the
researcher creates a composite measure of credit usage that consists of both dependent
variables, rather than having to compute a separate regression equation for each of the
dependent variables. The result of applying canonical correlation is a measure of the
strength of the relationship between two sets of multiple variables (canonical
variates). The measure of the strength of the relationship between the two variates is
expressed as a canonical correlation coefficient (Rc). The researcher now has two
results of interest: the canonical variates representing the optimal linear combinations
of dependent and independent variables; and the canonical correlation representing
the relationship between them.

Analyzing Relationships
with Canonical Correlation

Canonical correlation analysis is the most generalized member of the family of
multivariate statistical techniques. It is directly related to several dependence
methods. Similar to regression, canonical correlation’s goal is to quantify the strength
of the relationship, in this case between the two sets of variables (independent and
dependent). It corresponds to factor analysis in the creation of composites of
variables. It also resembles discriminant analysis in its ability to determine
independent dimensions (similar to discriminant functions) for each variable set, in
this situation with the objective of producing the maximum correlation between the
dimensions. Thus, canonical correlation identifies the optimum structure or
dimensionality of each variable set that maximizes the relationship between
independent and dependent variable sets.

Canonical correlation analysis deals with the association between composites of
sets of multiple dependent and independent variables. In doing so, it develops a
number of independent canonical functions that maximize the correlation between
the linear composites, also known as canonical variates, which are sets of
dependent and independent variables. Each canonical function is actually based on the
correlation between two canonical variates, one variate for the dependent variables
and one for the independent variables. Another unique feature of canonical correlation
is that the variates are derived to maximize their correlation. Moreover, canonical
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correlation does not stop with the derivation of a single relationship between the sets
of variables. Instead, a number of canonical functions (pairs of canonical variates)
may be derived.

The following discussion of canonical correlation analysis is organized around a
six-stage model-building process. The steps in this process include (1) specifying the
objectives of canonical correlation, (2) developing the analysis plan, (3) assessing the
assumptions underlying canonical correlation, (4) estimating the canonical model and
assessing overall model fit, (5) interpreting the canonical variates, and (6) validating
the model.

Stage 1: Objectives of Canonical
Correlation Analysis

The appropriate data for canonical correlation analysis are two sets of variables. We
assume that each set can be given some theoretical meaning, at least to the extent that
one set could be defined as the independent variables and the other as the dependent
variables. Once this distinction has been made, canonical correlation can address a
wide range of objectives. These objects may be any or all of the following:

1. Determining whether two sets of variables (measurements made on the same
objects) are independent of one another or, conversely, determining the
magnitude of the relationships that may exist between the two sets.

2. Deriving a set of weights for each set of dependent and independent variables so
that the linear combinations of each set are maximally correlated. Additional
linear functions that maximize the remaining correlation are independent of the
preceding set(s) of linear combinations.

3. Explaining the nature of whatever relationships exist between the sets of
dependent and independent variables, generally by measuring the relative
contribution of each variable to the canonical functions (relationships) that are
extracted.

The inherent flexibility of canonical correlation in terms of the number and types of
variables handled, both dependent and independent, makes it a logical candidate for
many of the more complex problems addressed with multivariate techniques.

Stage 2: Designing a Canonical
Correlation Analysis

As the most general form of multivariate analysis, canonical correlation analysis
shares basic implementation issues common to all multivariate techniques.
Discussions on the impact of measurement error, the types of variables, and their



Adapted from Chapter 8, Multivariate Data Analysis, 5th edition by Joseph F. Hair, Jr., Rolph E.
Anderson, Ronald L. Tatham and William C. Black. Copyright © Prentice Hall, Inc. 1998.

transformations that can be included are relevant to canonical correlation analysis as
well.

The issues of the impact of sample size (both small and large) and the necessity for
a sufficient number of observations per variable are frequently encountered with
canonical correlation. Researchers are tempted to include many variables in both the
independent and dependent variable set, not realizing the implications for sample size.
Sample sizes that are very small will not represent the correlations well, thus
obscuring any meaningful relationships. Very large samples will have a tendency to
indicate statistical significance in all instances, even where practical significance is
not indicated. The researcher is also encouraged to maintain at least 10 observations
per variable to avoid “overfitting” the data.

The classification of variables as dependent or independent is of little importance
for the statistical estimation of the canonical functions, because canonical correlation
analysis weights both variates to maximize the correlation and places no particular
emphasis on either variate. Yet because the technique produces variates to maximize
the correlation between them, a variable in either set relates to all other variables in
both sets. This allows the addition or deletion of a single variable to affect the entire
solution, particularly the other variate. The composition of each variate, either
independent or dependent, becomes critical. A researcher must have conceptually
linked sets of the variables before applying canonical correlation analysis. This makes
the specification of dependent versus independent variates essential to establishing a
strong conceptual foundation for the variables.

Stage 3: Assumptions
in Canonical Correlation

The generality of canonical correlation analysis also extends to its underlying
statistical assumptions. The assumption of linearity affects two aspects of canonical
correlation results. First, the correlation coefficient between any two variables is
based on a linear relationship. If the relationship is nonlinear, then one or both
variables should be transformed, if possible. Second, the canonical correlation is the
linear relationship between the variates. If the variates relate in a nonlinear manner,
the relationship will not be captured by canonical correlation. Thus, while canonical
correlation analysis is the most generalized multivariate method, it is still constrained
to identifying linear relationships.

Canonical correlation analysis can accommodate any metric variable without the
strict assumption of normality. Normality is desirable because it standardizes a
distribution to allow for a higher correlation among the variables. But in the strictest
sense, canonical correlation analysis can accommodate even nonnormal variables if
the distributional form (e.g., highly skewed) does not decrease the correlation with
other variables. This allows for transformed nonmetric data (in the form of dummy
variables) to be used as well. However, multivariate normality is required for the
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statistical inference test of the significance of each canonical function. Because tests
for multivariate normality are not readily available, the prevailing guideline is to
ensure that each variable has univariate normality. Thus, although normality is not
strictly required, it is highly recommended that all variables be evaluated for
normality and transformed if necessary.

Homoscedasticity, to the extent that it decreases the correlation between variables,
should also be remedied. Finally, multicollinearity among either variable set will
confound the ability of the technique to isolate the impact of any single variable,
making interpretation less reliable.

Stage 4: Deriving the Canonical Functions
and Assessing Overall Fit

The first step of canonical correlation analysis is to derive one or more canonical
functions. Each function consists of a pair of variates, one representing the
independent variables and the other representing the dependent variables. The
maximum number of canonical variates (functions) that can be extracted from the sets
of variables equals the number of variables in the smallest data set, independent or
dependent. For example, when the research problem involves five independent
variables and three dependent variables, the maximum number of canonical functions
that can be extracted is three.

Deriving Canonical Functions
The derivation of successive canonical variates is similar to the procedure used with
unrotated factor analysis. The first factor extracted accounts for the maximum amount
of variance in the set of variables, then the second factor is computed so that it
accounts for as much as possible of the variance not accounted for by the first factor,
and so forth, until all factors have been extracted. Therefore, successive factors are
derived from residual or leftover variance from earlier factors. Canonical correlation
analysis follows a similar procedure but focuses on accounting for the maximum
amount of the relationship between the two sets of variables, rather than within a
single set. The result is that the first pair of canonical variates is derived so as to have
the highest intercorrelation possible between the two sets of variables. The second
pair of canonical variates is then derived so that it exhibits the maximum relationship
between the two sets of variables (variates) not accounted for by the first pair of
variates. In short, successive pairs of canonical variates are based on residual
variance, and their respective canonical correlations (which reflect the
interrelationships between the variates) become smaller as each additional function is
extracted. That is, the first pair of canonical variates exhibits the highest
intercorrelation, the next pair the second-highest correlation, and so forth.

One additional point about the derivation of canonical variates: as noted, successive
pairs of canonical variates are based on residual variance. Therefore, each of the pairs
of variates is orthogonal and independent of all other variates derived from the same
set of data.
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The strength of the relationship between the pairs of variates is reflected by the
canonical correlation. When squared, the canonical correlation represents the amount
of variance in one canonical variate accounted for by the other canonical variate. This
also may be called the amount of shared variance between the two canonical variates.
Squared canonical correlations are called canonical roots or eigenvalues.

Which Canonical Functions Should Be Interpreted?
As with research using other statistical techniques, the most common practice is to
analyze functions whose canonical correlation coefficients are statistically significant
beyond some level, typically .05 or above. If other independent functions are deemed
insignificant, these relationships among the variables are not interpreted.
Interpretation of the canonical variates in a significant function is based on the
premise that variables in each set that contribute heavily to shared variances for these
functions are considered to be related to each other.

The authors believe that the use of a single criterion such as the level of significance
is too superficial. Instead, they recommend that three criteria be used in conjunction
with one another to decide which canonical functions should be interpreted. The three
criteria are (1) level of statistical significance of the function, (2) magnitude of the
canonical correlation, and (3) redundancy measure for the percentage of variance
accounted for from the two data sets.

Level of Significance
The level of significance of a canonical correlation generally considered to be the
minimum acceptable for interpretation is the .05 level, which (along with the .01
level) has become the generally accepted level for considering a correlation
coefficient statistically significant. This consensus has developed largely because of
the availability of tables for these levels. These levels are not necessarily required in
all situations, however, and researchers from various disciplines frequently must rely
on results based on lower levels of significance. The most widely used test, and the
one normally provided by computer packages, is the F statistic, based on Rao’s
approximation [3].

In addition to separate tests of each canonical function, a multivariate test of all
canonical roots can also be used for evaluating the significance of canonical roots.
Many of the measures for assessing the significance of discriminant functions,
including Wilks’ lambda, Hotelling’s trace, Pillai’s trace, and Roy’s gcr, are also
provided.

Magnitude of the Canonical Relationships
The practical significance of the canonical functions, represented by the size of the
canonical correlations, also should be considered when deciding which functions to
interpret. No generally accepted guidelines have been established regarding suitable
sizes for canonical correlations. Rather, the decision is usually based on the
contribution of the findings to better understanding of the research problem being
studied. It seems logical that the guidelines suggested for significant factor loadings in
factor analysis might be useful with canonical correlations, particularly when one
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considers that canonical correlations refer to the variance explained in the canonical
variates (linear composites), not the original variables.

Redundancy Measure of Shared Variance
Recall that squared canonical correlations (roots) provide an estimate of the shared
variance between the canonical variates. Although this is a simple and appealing
measure of the shared variance, it may lead to some misinterpretation because the
squared canonical correlations represent the variance shared by the linear composites
of the sets of dependent and independent variables, and not the variance extracted
from the sets of variables [1]. Thus, a relatively strong canonical correlation may be
obtained between two linear composites (canonical variates), even though these linear
composites may not extract significant portions of variance from their respective sets
of variables.

Because canonical correlations may be obtained that are considerably larger than
previously reported bivariate and multiple correlation coefficients, there may be a
temptation to assume that canonical analysis has uncovered substantial relationships
of conceptual and practical significance. Before such conclusions are warranted,
however, further analysis involving measures other than canonical correlations must
be undertaken to determine the amount of the dependent variable variance accounted
for or shared with the independent variables [7].

To overcome the inherent bias and uncertainty in using canonical roots (squared
canonical correlations) as a measure of shared variance, a redundancy index has
been proposed [8]. It is the equivalent of computing the squared multiple correlation
coefficient between the total independent variable set and each variable in the
dependent variable set, and then averaging these squared coefficients to arrive at an
average R2. This index provides a summary measure of the ability of a set of
independent variables (taken as a set) to explain variation in the dependent variables
(taken one at a time). As such, the redundancy measure is perfectly analogous to
multiple regression’s R2 statistic, and its value as an index is similar.

The Stewart-Love index of redundancy calculates the amount of variance in one set
of variables that can be explained by the variance in the other set. This index serves as
a measure of accounted-for variance, similar to the R2 calculation used in multiple
regression. The R2 represents the amount of variance in the dependent variable
explained by the regression function of the independent variables. In regression, the
total variance in the dependent variable is equal to 1, or 100 percent. Remember that
canonical correlation is different from multiple regression in that it does not deal with
a single dependent variable but has a composite of the dependent variables, and this
composite has only a portion of each dependent variable’s total variance. For this
reason, we cannot assume that 100 percent of the variance in the dependent variable
set is available to be explained by the independent variable set. The set of independent
variables can be expected to account only for the shared variance in the dependent
canonical variate. For this reason, the calculation of the redundancy index is a three-
step process. The first step involves calculating the amount of shared variance from
the set of dependent variables included in the dependent canonical variate. The second
step involves calculating the amount of variance in the dependent canonical variate
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that can be explained by the independent canonical variate. The final step is to
calculate the redundancy index, found by multiplying these two components.

Step 1: The Amount of Shared Variance. To calculate the amount of shared
variance in the dependent variable set included in the dependent canonical variate,
let us first consider how the regression R2 statistic is calculated. R2 is simply the
square of the correlation coefficient R, which represents the correlation between the
actual dependent variable and the predicted value. In the canonical case, we are
concerned with correlation between the dependent canonical variate and each of the
dependent variables. Such information can be obtained from the canonical loadings
(L1), which represent the correlation between each input variable and its own
canonical variate (discussed in more detail in the following section). By squaring
each of the dependent variable loadings (Li

2), one may obtain a measure of the
amount of variation in each of the dependent variables explained by the dependent
canonical variate. To calculate the amount of shared variance explained by the
canonical variate, a simple average of the squared loadings is used.

Step 2: The Amount of Explained Variance. The second step of the redundancy
process involves the percentage of variance in the dependent canonical variate that
can be explained by the independent canonical variate. This is simply the squared
correlation between the independent canonical variate and the dependent canonical
variate, which is otherwise known as the canonical correlation. The squared
canonical correlation is commonly called the canonical R2.

Step 3: The Redundancy Index. The redundancy index of a variate is then derived
by multiplying the two components (shared variance of the variate multiplied by the
squared canonical correlation) to find the amount of shared variance that can be
explained by each canonical function. To have a high redundancy index, one must
have a high canonical correlation and a high degree of shared variance explained by
the dependent variate. A high canonical correlation alone does not ensure a valuable
canonical function. Redundancy indices are calculated for both the dependent and
the independent variates, although in most instances the researcher is concerned
only with the variance extracted from the dependent variable set, which provides a
much more realistic measure of the predictive ability of canonical relationships. The
researcher should note that while the canonical correlation is the same for both
variates in the canonical function, the redundancy index will most likely vary
between the two variates, as each will have a differing amount of shared variance.

What is the minimum acceptable redundancy index needed to justify the
interpretation of canonical functions? Just as with canonical correlations, no generally
accepted guidelines have been established. The researcher must judge each canonical
function in light of its theoretical and practical significance to the research problem
being investigated to determine whether the redundancy index is sufficient to justify
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interpretation. A test for the significance of the redundancy index has been developed
[2], although it has not been widely utilized.

Stage 5: Interpreting the Canonical Variate

If the canonical relationship is statistically significant and the magnitudes of the
canonical root and the redundancy index are acceptable, the researcher still needs to
make substantive interpretations of the results. Making these interpretations involves
examining the canonical functions to determine the relative importance of each of the
original variables in the canonical relationships. Three methods have been proposed:
(1) canonical weights (standardized coefficients), (2) canonical loadings (structure
correlations), and (3) canonical cross-loadings.

Canonical Weights
The traditional approach to interpreting canonical functions involves examining the
sign and the magnitude of the canonical weight assigned to each variable in its
canonical variate. Variables with relatively larger weights contribute more to the
variates, and vice versa. Similarly, variables whose weights have opposite signs
exhibit an inverse relationship with each other, and variables with weights of the same
sign exhibit a direct relationship. However, interpreting the relative importance or
contribution of a variable by its canonical weight is subject to the same criticisms
associated with the interpretation of beta weights in regression techniques. For
example, a small weight may mean either that its corresponding variable is irrelevant
in determining a relationship or that it has been partialed out of the relationship
because of a high degree of multicollinearity. Another problem with the use of
canonical weights is that these weights are subject to considerable instability
(variability) from one sample to another. This instability occurs because the
computational procedure for canonical analysis yields weights that maximize the
canonical correlations for a particular sample of observed dependent and independent
variable sets [7]. These problems suggest considerable caution in using canonical
weights to interpret the results of a canonical analysis.

Canonical Loadings
Canonical loadings have been increasingly used as a basis for interpretation because
of the deficiencies inherent in canonical weights. Canonical loadings, also called
canonical structure correlations, measure the simple linear correlation between an
original observed variable in the dependent or independent set and the set’s canonical
variate. The canonical loading reflects the variance that the observed variable shares
with the canonical variate and can be interpreted like a factor loading in assessing the
relative contribution of each variable to each canonical function. The methodology
considers each independent canonical function separately and computes the within-set
variable-to-variate correlation. The larger the coefficient, the more important it is in
deriving the canonical variate. Also, the criteria for determining the significance of
canonical structure correlations are the same as with factor loadings in factor analysis.
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Canonical loadings, like weights, may be subject to considerable variability from
one sample to another. This variability suggests that loadings, and hence the
relationships ascribed to them, may be sample-specific, resulting from chance or
extraneous factors [7]. Although canonical loadings are considered relatively more
valid than weights as a means of interpreting the nature of canonical relationships, the
researcher still must be cautious when using loadings for interpreting canonical
relationships, particularly with regard to the external validity of the findings.

Canonical Cross-Loadings
The computation of canonical cross-loadings has been suggested as an alternative to
canonical loadings [4]. This procedure involves correlating each of the original
observed dependent variables directly with the independent canonical variate, and
vice versa. Recall that conventional loadings correlate the original observed variables
with their respective variates after the two canonical variates (dependent and
independent) are maximally correlated with each other. This may also seem similar to
multiple regression, but it differs in that each independent variable, for example, is
correlated with the dependent variate instead of a single dependent variable. Thus
cross-loadings provide a more direct measure of the dependent–independent variable
relationships by eliminating an intermediate step involved in conventional loadings.
Some canonical analyses do not compute correlations between the variables and the
variates. In such cases the canonical weights are considered comparable but not
equivalent for purposes of our discussion.

Which Interpretation Approach to Use
Several different methods for interpreting the nature of canonical relationships have
been discussed. The question remains, however: Which method should the researcher
use? Because most canonical problems require a computer, the researcher frequently
must use whichever method is available in the standard statistical packages. The
cross-loadings approach is preferred, and it is provided by many computer programs,
but if the cross-loadings are not available, the researcher is forced either to compute
the cross-loadings by hand or to rely on the other methods of interpretation. The
canonical loadings approach is somewhat more representative than the use of weights,
just as was seen with factor analysis and discriminant analysis. Therefore, whenever
possible the loadings approach is recommended as the best alternative to the
canonical cross-loadings method.

Stage 6: Validation and Diagnosis

As with any other multivariate technique, canonical correlation analysis should be
subjected to validation methods to ensure that the results are not specific only to the
sample data and can be generalized to the population. The most direct procedure is to
create two subsamples of the data (if sample size allows) and perform the analysis on
each subsample separately. Then the results can be compared for similarity of



Adapted from Chapter 8, Multivariate Data Analysis, 5th edition by Joseph F. Hair, Jr., Rolph E.
Anderson, Ronald L. Tatham and William C. Black. Copyright © Prentice Hall, Inc. 1998.

canonical functions, variate loadings, and the like. If marked differences are found,
the researcher should consider additional investigation to ensure that the final results
are representative of the population values, not solely those of a single sample.

Another approach is to assess the sensitivity of the results to the removal of a
dependent and/or independent variable. Because the canonical correlation procedure
maximizes the correlation and does not optimize the interpretability, the canonical
weights and loadings may vary substantially if one variable is removed from either
variate. To ensure the stability of the canonical weights and loading, the researcher
should estimate multiple canonical correlations, each time removing a different
independent or dependent variable.

Although there are few diagnostic procedures developed specifically for canonical
correlation analysis, the researcher should view the results within the limitations of
the technique. Among the limitations that can have the greatest impact on the results
and their interpretation are the following:

1. The canonical correlation reflects the variance shared by the linear composites
of the sets of variables, not the variance extracted from the variables.

2. Canonical weights derived in computing canonical functions are subject to a
great deal of instability.

3. Canonical weights are derived to maximize the correlation between linear
composites, not the variance extracted.

4. The interpretation of the canonical variates may be difficult because they are
calculated to maximize the relationship, and there are no aids for interpretation,
such as rotation of variates, as seen in factor analysis.

5. It is difficult to identify meaningful relationships between the subsets of
independent and dependent variables because precise statistics have not yet been
developed to interpret canonical analysis, and we must rely on inadequate
measures such as loadings or cross-loadings [7].

These limitations are not meant to discourage the use of canonical correlation. Rather,
they are pointed out to enhance the effectiveness of canonical correlation as a research
tool.

An Illustrative Example

To illustrate the application of canonical correlation, we use variables drawn from the
a short survey of customers of the firm known as HATCO. The data consist of a series
of measures obtained on a sample of 100 HATCO customers. The variables include
ratings of HATCO on seven attributes (X1 to X7) and two measures reflecting the
effects of HATCO’s efforts (X9, usage of HATCO products, and X10, customer
satisfaction with HATCO). A complete description of the HATCO survey is
provided in Exhibit 1.

The discussion of this application of canonical correlation analysis follows the six-
stage process discussed earlier in the chapter. At each stage the results illustrating the
decisions in that stage are examined.
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Stage 1: Objectives of Canonical Correlation Analysis
In demonstrating the application of canonical correlation, we use nine variables as
input data. The HATCO ratings (X1 through X7) are designated as the set of
independent variables. The measures of usage level and satisfaction level (variables
X9 and X10) are specified as the set of dependent variables. The statistical problem
involves identifying any latent relationships (relationships between composites of
variables rather the individual variables themselves) between a customer’s
perceptions about HATCO and the customer’s level of usage and satisfaction.

Stages 2 and 3: Designing a Canonical Correlation
Analysis and Testing the Assumptions

The designation of the variables includes two metric-dependent and seven
metric-independent variables. The conceptual basis of both sets is well established, so
there is no need for alternative model formulations testing different sets of variables.
The seven variables resulted in a 13-to-1 ratio of observations to variables, exceeding
the guideline of 10 observations per variable. The sample size of 100 is not felt to
affect the estimates of sampling error markedly and thus should have no impact on the
statistical significance of the results. Finally, for purposes of this example, assume
that both dependent and independent variables were assessed for meeting the basic
distributional assumptions underlying multivariate analyses and passed all statistical
tests.

Stage 4: Deriving the Canonical Functions
and Assessing Overall Fit

The canonical correlation analysis was restricted to deriving two canonical functions
because the dependent variable set contained only two variables. To determine the
number of canonical functions to include in the interpretation stage, the analysis
focused on the level of statistical significance, the practical significance of the
canonical correlation, and the redundancy indices for each variate.

Statistical and Practical Significance
The first statistical significance test is for the canonical correlations of each of the two
canonical functions. In this example, both canonical correlations are statistically
significant (see Table 8.2). In addition to tests of each canonical function separately,
multivariate tests of both functions simultaneously are also performed. The test
statistics employed are Wilks’ lambda, Pillai’s criterion, Hotelling’s trace, and Roy’s
gcr. Table 8.2 also details the multivariate test statistics, which all indicate that the
canonical functions, taken collectively, are statistically significant at the .01 level.

In addition to statistical significance, the canonical correlations were both of
sufficient size to be deemed practically significant. The final step was to perform
redundancy analyses on both canonical functions.

Redundancy Analysis
A redundancy index is calculated for the independent and dependent variates of the
first function in Table 8.3. As can be seen, the redundancy index for the dependent
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variate is substantial (.751). The independent variate, however, has a markedly lower
redundancy index (.242), although in this case, because there is a clear delineation
between dependent and independent variables, this lower value is not unexpected or
problematic. The low redundancy of the independent variate results from the
relatively low shared variance in the independent variate (.276), not the canonical R2 .
From the redundancy analysis and the statistical significance tests, the first function
should be accepted.

The redundancy analysis for the second function produces quite different results
(see Table 8.4). First, the canonical R2 is substantially lower (.260). Moreover, both
variable sets have low shared variance in the second function (.145 for the dependent
variate and .082 for the independent variate). Their combination with the canonical
root in the redundancy index produces values of .038 for the dependent variate and
.021 for the independent variate. Thus, although the second function is statistically
significant, it has little practical significance. With such a small percentage, one must
question the value of the function. This is an excellent example of a statistically
significant canonical function that does not have practical significance because it does
not explain a large proportion of the dependent variables’ variance.

The interested researcher should also consider factor analysis with attention to the
discussion of scale development. Canonical correlation is in some ways a form of
scale development, as the dependent and independent variates represent dimensions
of the variable sets similar to the scales developed with factor analysis. The primary
difference is that these dimensions are developed to maximize the relationship
between them, whereas factor analysis maximizes the explanation (shared variance)
of the variable set.

Stage 5: Interpreting the Canonical Variates
With the canonical relationship deemed statistically significant and the magnitude of
the canonical root and the redundancy index acceptable, the researcher proceeds to
making substantive interpretations of the results. Although the second function could
be considered practically nonsignificant, owing to the low redundancy value, it is
included in the interpretation phase for illustrative reasons. These interpretations
involve examining the canonical functions to determine the relative importance of
each of the original variables in deriving the canonical relationships. The three
methods for interpretation are (1) canonical weights (standardized coefficients), (2)
canonical loadings (structure correlations), and (3) canonical cross-loadings.

Canonical Weights
Table 8.5 contains the standardized canonical weights for each canonical variate for
both dependent and independent variables. As discussed earlier, the magnitude of the
weights represents their relative contribution to the variate. Based on the size of the
weights, the order of contribution of independent variables to the first variate is X3 ,
X5, X4, X1, X2, X6, and X7, and the dependent variable order on the first variate is X10 ,
then X9. Similar rankings can be found for the variates of the second canonical
function. Because canonical weights are typically unstable, particularly in instances of
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multicollinearity, owing to their calculation solely to optimize the canonical
correlation, the canonical loading and cross-loadings are considered more appropriate.

Canonical Loadings
Table 8.6 contains the canonical loadings for the dependent and independent variates
for both canonical functions. The objective of maximizing the variates for the
correlation between them results in variates “optimized” not for interpretation, but
instead for prediction. This makes identification of relationships more difficult. In the
first dependent variate, both variables have loadings exceeding .90, resulting in the
high shared variance (.855). This indicates a high degree of intercorrelation among the
two variables and suggests that both, or either, measures are representative of the
effects of HATCO’s efforts.

The first independent variate has a quite different pattern, with loadings ranging
from .061 to .765, with one independent variable (X7) even having a negative loading,
although it is rather small and not of substantive interest. The three variables with the
highest loadings on the independent variate are X5 (overall service), X1 (delivery
speed), and X3 (price flexibility). This variate does not correspond to the dimensions
that would be extracted in factor analysis, but it would not be expected to because the
variates in canonical correlation are extracted only to maximize predictive objectives.
As such, it should correspond more to the results from other dependence techniques.
There is a close correspondence to multiple regression results with X9 as the
dependent variable. Two of these variables (X3 and X5) were included in the stepwise
regression analysis in which X9 (one of the two variables in the dependent variate)
was the dependent variable. Thus, the first canonical function closely corresponds to
the multiple regression results, with the independent variate representing the set of
variables best predicting the two dependent measures. The researcher should also
perform a sensitivity analysis of the independent variate in this case to see whether the
loadings change when an independent variable is deleted (see stage 6).

The second variate’s poor redundancy values are exhibited in the substantially
lower loadings for both variates on the second function. Thus, the poorer
interpretability as reflected in the lower loadings, coupled with the low redundancy
values, reinforce the low practical significance of the second function.

Canonical Cross-Loadings
Table 8.6 also includes the cross-loadings for the two canonical functions. In studying
the first canonical function, we see that both independent variables (X9 and X10)
exhibit high correlations with the independent canonical variate (function 1): .855 and
.877, respectively. This reflects the high shared variance between these two variables.
By squaring these terms, we find the percentage of the variance for each of the
variables explained by function 1. The results show that 73 percent of the variance in
X9 and 77 percent of the variance in X10 is explained by function 1. Looking at the
independent variables’ cross-loadings, we see that variables X1 and X5 both have high
correlations of roughly .72 with the dependent canonical variate. From this
information, approximately 52 percent of the variance in each of these two variables
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is explained by the dependent variate (the 52 percent is obtained by squaring the
correlation coefficient, .72). The correlation of X3 (.584) may appear high, but after
squaring this correlation, only 34 percent of the variation is included in the canonical
variate.

The final issue of interpretation is examining the signs of the cross-loadings. All
independent variables except X7 (product quality) have a positive, direct relationship.
For the second function, two independent variables (X4 and X6), plus a dependent
variable (X10), are negative. The three highest cross-loadings of the first independent
variate correspond to the variables with the highest canonical loadings as well. Thus
all the relationships are direct except for one inverse relationship in the first function.

Stage 6: Validation and Diagnosis
The last stage should involve a validation of the canonical correlation analyses
through one of several procedures. Among the available approaches would be (1)
splitting the sample into estimation and validation samples, or (2) sensitivity analysis
of the independent variable set. Table 8.7 contains the result of such a sensitivity
analysis in which the canonical loadings are examined for stability when individual
independent variables are deleted from the analysis. As seen, the canonical loadings in
our example are remarkably stable and consistent in each of the three cases where an
independent variable (X1, X2, or X7) is deleted. The overall canonical correlations
also remain stable. But the researcher examining the canonical weights (not presented
in the table) would find widely varying results, depending on which variable was
deleted. This reinforces the procedure of using the canonical loading and cross-
loading for interpretation purposes.

A Managerial Overview

The canonical correlation analysis addresses two primary objectives: (1) the
identification of dimensions among the dependent and independent variables that (2)
maximize the relationship between the dimensions. From a managerial perspective,
this provides the researcher with some insight into the structure of the different
variable sets as they relate to a dependence relationship. First, the results indicate only
a single relationship exists, supported by the low practical significance of the second
canonical function. In examining this relationship, we first see that the two dependent
variables are quite closely related and create a well-defined dimension for
representing the outcomes of HATCO’s efforts. Second, this outcome dimension is
fairly well predicted by the set of independent variables when acting as a set. The
redundancy value of .750 would be a quite acceptable R2 for a comparable multiple
regression. When interpreting the independent variate, we see that three variables, X5

(overall service), X1 (delivery speed), and X3 (price flexibility) provide the
substantive contributions and thus are the key predictors of the outcome dimension.
These should be the focal points in the development of any strategy directed toward
impacting the outcomes of HATCO.
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Summary

Canonical correlation analysis is a useful and powerful technique for exploring the
relationships among multiple dependent and independent variables. The technique is
primarily descriptive, although it may be used for predictive purposes. Results
obtained from a canonical analysis should suggest answers to questions concerning
the number of ways in which the two sets of multiple variables are related, the
strengths of the relationships, and the nature of the relationships defined.

Canonical analysis enables the researcher to combine into a composite measure
what otherwise might be an unmanageably large number of bivariate correlations
between sets of variables. It is useful for identifying overall relationships between
multiple independent and dependent variables, particularly when the data researcher
has little a priori knowledge about relationships among the sets of variables.
Essentially, the researcher can apply canonical correlation analysis to a set of
variables, select those variables (both independent and dependent) that appear to be
significantly related, and run subsequent canonical correlations with the more
significant variables remaining, or perform individual regressions with these
variables.

Questions

1. Under what circumstances would you select canonical correlation analysis instead
of multiple regression as the appropriate statistical technique?
2. What three criteria should you use in deciding which canonical functions should be
interpreted? Explain the role of each.
3. How would you interpret a canonical correlation analysis?
4. What is the relationship among the canonical root, the redundancy index, and
multiple regression’s R2?
5. What are the limitations associated with canonical correlation analysis?
6. Why has canonical correlation analysis been used much less frequently than the
other multivariate techniques?
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Annotated Articles

The following annotated articles are provided as illustrations of the application of canonical correlation
analysis to substantive research questions of both a conceptual and managerial nature. The reader is
encouraged to review the complete articles for greater detail on any of the specific issues regarding
methodology or findings.

Schul, Patrick L., William M. Pride, and Taylor L. Little (1983), “The Impact of Channel
Leadership Behavior on Intrachannel Conflict.” Journal of Marketing 47(3): 21–34.

This article uses canonical correlation analysis, a technique that allows for the investigation of
multiple independent variable effects upon multiple dependent variables. In this article, the multivariate
technique is applied to determine the effects of leadership style upon perceptions of intrachannel
conflict. By examining the strength and direction of the relationship between leadership style and overall
intrachannel conflict, canonical correlation analysis provides the researcher with information to improve
distribution channel transactions. Findings of this nature also provide managers of channel member
organizations with a means of structuring their conduct with other channel members. Three leadership
styles—participative, directive, and supportive—which have been theorized to exhibit an inverse
relationship with two forms of intrachannel conflict—administrative and product-service—are defined
and measured. It is through this technique that researchers are able to explore the relationship between
such multifaceted constructs as leadership and conflict.

Data from a sample of 349 franchised real estate brokers were analyzed to test for an association
between channel leadership (as the predictor, or independent variables) and intrachannel conflict (as the
criterion, or dependent variables). The authors are able to confirm that there exists a strong relationship
between the type of channel leadership and intrachannel conflict by examining the redundancy index
(indicates the amount of variance explained in a canonical variate by the other canonical variate) and the
correlation between the two variates. Through individual analysis, all three leadership styles are shown
to reduce conflict. Participative and supportive techniques facilitate understanding and acceptance of
policies and procedures, whereas a directive style reduces role ambiguity. From the large cross-loading
values, the results indicate that supportive leadership has a stronger relationship with reducing channel
conflict than participative or directive leadership. For validation purposes, the authors run a canonical
correlation analysis on an analysis and hold-out sample. Canonical weights are compared across the two
samples, thereby providing an indication of the stability of this measure for the combined sample. These
results indicate that a channel leader should implement a style that best fits the needs of the franchisee in
order to minimize channel conflict.

Luthans, Fred, Dianne H. B. Welsh, and Lewis A. Taylor III (1988), “A Descriptive Model of
Managerial Effectiveness.” Group and Organization Studies 13(2): 148–62.
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By conducting a canonical correlation analysis, this study seeks to determine which specific
managerial activities relate to organizational effectiveness. The authors identify nine managerial
activities and eight items on organizational subunit effectiveness. The activities of 78 managers are
observed and recorded in order to measure engagement in the identified behaviors. To eliminate same-
source bias that may be introduced if the managers rate subunit effectiveness, their subordinates (278 in
all) rate subunit effectiveness. Whereas other studies examine the activities of successful managers (i.e.,
those on a fast promotion track), this study seeks to identify those behaviors that contribute to
organizational effectiveness. The canonical correlation analysis between the frequency of the managerial
activities and subordinate-reported subunit effectiveness is used in order to reveal the presence and
strength of the relationship between the two sets of variables.

Results indicate a significant canonical variate (canonical correlation = .44); however, the strength of
the relationship is not assessed (i.e., the redundancy index, which is a better measure of the ability of the
predictor variables to explain variation in the criterion variables, is not reported). Interpretation of the
results suggests a continuum of management orientation from quantity-oriented human resources to
quality-oriented traditional. Quantity-oriented human resource managers are understood to focus on
staffing and motivating or reinforcing activities and are perceived as having quantity performance in
their units. These managers, however, have limited outside interaction, engagement in controlling and
planning activities, or the perception of quality performance in their units. On the other hand, quality-
oriented traditional managers are understood as having quality performance in their units, interacting
with outsiders, and engaging in controlling and planning activities. Although the findings are not
validated, the authors maintain that the results should assist organizational planners in identifying the
necessary managerial skills for the desired organizational outcome (i.e., human resource activities may
aid in the attainment of more output whereas traditional management activities may improve quality).

Van Auken, Howard E., B. Michael Doran, and Kil-Jhin Yoon (1993), “A Financial Comparison
between Korean and U.S. Firms: A Cross–Balance Sheet Canonical Correlation Analysis.”
Journal of Small Business Management 31(3): 73–83.

In this article, the authors seek to examine cross–balance sheet relationships and general financing
strategies of small- to medium-sized Korean firms through the use of canonical correlation analysis.
From a random sample of 45 Korean firms, financial position statements from 1988 were obtained for
various asset, liability, and equity accounts. The relationships between the assets (cash, accounts
receivable, inventories, and long-term assets) and liabilities and equities (accounts payable, other current
liabilities, long-term debt, and equity) were explored using canonical correlation analysis. The study’s
design allowed the authors to compare the results of previously published works on Mexican and U.S.
small- and medium-sized firms. This and previous studies have demonstrated that the financial strategies
of small firms are influenced by economic conditions and cultural elements. The results of the study
should aid in the decision making of small business owners who are developing financing strategies in
similar economies.

The analysis resulted in all four canonical functions being significant. As a further assessment of the
canonical functions, the authors calculate a redundancy index. The proportion of the asset variance
accounted for by the liability variance is .60. The liability variance shared with the asset variance is .24.
Because the canonical relationships were acceptable, the authors proceed to make the following
interpretations about small- to medium-sized Korean firms: (1) they experience hedging, (2) they use
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collateral for loans, (3) their inventories are associated with accounts payable, and (4) they manage risk
with the simultaneous use of lower leverage and greater liquidity balances. Compared to U.S. firms,
Korean firms rely heavily on the use of current debt. The findings extend earlier studies, which suggest
that the financial strategies of small firms in other countries are dependent on the marketing constraints
of the country in which the firm operates.

Mahmood, Mo Adam, and Gary J. Mann (1993), “Measuring the Organizational Impact of
Information Technology Investment: An Exploratory Study.” Journal of Management Information
Systems 10(1): 97–122.

This article seeks to determine whether a relationship exists between information technology (IT)
investment and the strategic and economic performance of the firm. From past research measuring the
impact of IT on the organization, the authors determine which measures to include in the study. The
predictor variables consist of five IT investment measures, and the criterion variables include six
organizational strategic and economic performance measures. Canonical analysis is used for exploratory
purposes with no specific hypotheses offered. The technique enables the researchers to determine the
presence and magnitude of the association between multiple IT and organizational performance
measures. From the results, the authors offer hypotheses and a model depicting the interrelationships
between IT investment and performance.

The canonical correlation analysis is performed with a sample of 100 firms. The results indicate a
significant relationship with 10.4 percent of the variation in the organizational performance measures
explained by IT investment. Although only one of the five canonical functions is significant, the authors
interpret the two functions that account for nearly 86 percent of the total explained variation (i.e., of the
10.4 percent). By examining the canonical loadings of the two functions, the authors are able to
determine the relative importance of each variable. Altogether, the findings are interpreted as indicating
that IT investment contributes to organizational performance when the firm invests in both equipment
and employee IT training. These conclusions lead the authors to call for further research to test the
interdependencies between IT investment and firm performance using different methods and samples.
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Exhibit 1
Description of the HATCO Survey

The HATCO survey was a study conducted with 100 customers on 14 separate variables in a segmentation study for a
business-to-business situation, specifically a survey of existing customers of HATCO. Three types of information were
collected. The first type is the perception of HATCO on seven attributes identified in past studies as the most influential in the
choice of suppliers. The respondents, purchasing managers of firms buying from HATCO, rated HATCO on each attribute.
The second type of information relates to actual purchase outcomes, either the evaluations of each respondent’s satisfaction
with HATCO or the percentage of that respondent’s product purchases from HATCO. The third type of information contains
general characteristics of the purchasing companies (e.g., firm size, industry type). A brief description of the variables is
provided below. A complete dataset of all 100 observations is also available at the Multivariate Data Analysis website
(www.mvstats.com) under materials for the fifth edition.

Perceptions of HATCO
Each of the variables was measured on a graphic rating scale, where a 10-centimeter line was drawn between the endpoints,
labeled “Poor” and “Excellent.”

Respondents indicated their perceptions by making a mark anywhere on the line. The mark was then measured and the
distance from 0 (in centimeters) was recorded. The result was a scale ranging from 0 to 10, rounded to a single decimal place.
The seven HATCO attributes rated by each respondent are as follows:

 X1 Delivery speed—amount of time it takes to deliver the product once an order has been confirmed
 X2 Price level—perceived level of price charged by product suppliers
 X3 Price flexibility—perceived willingness of HATCO representatives to negotiate price on all types of purchases
 X4 Manufacturer’s image—overall image of the manufacturer or supplier
 X5 Overall service—overall level of service necessary for maintaining a satisfactory relationship between supplier and

purchaser
 X6 Salesforce image—overall image of the manufacturer’s salesforce
 X7 Product quality—perceived level of quality of a particular product (e.g., performance or yield)

Purchase Outcomes
Two specific measures were obtained that reflected the outcomes of the respondent’s purchase relationships with HATCO.
These measures include:

 X9 Usage level—how much of the firm’s total product is purchased from HATCO, measured on a 100-point percentage
scale, ranging from 0 to 100 percent
 X10 Satisfaction level—how satisfied the purchaser is with past purchases from HATCO, measured on the same graphic
rating scale as perceptions X1 to X7

Purchaser Characteristics
The five characteristics of the responding firms used in the study, some metric and some nonmetric, are as follows:

 X8 Size of firm—size of the firm relative to others in this market. This variable has two categories: 1=large, 0=small
 X11 Specification buying—extent to which a particular purchaser evaluates each purchase separately (total value analysis)

versus the use of specification buying, which details precisely the product characteristics desired. This variable has two
categories: 1=employs total value analysis approach, evaluating each purchase separately; 0=use of specification buying

 X12 Structure of procurement—method of procuring or purchasing products within a particular company. This variable
has two categories: 1=centralized procurement, 0=decentralized procurement

 X13 Type of industry—industry classification in which a product purchaser belongs. This variable has two categories:
1=industry A, 0=other industries

 X14 Type of buying situation—type of situation facing the purchaser. This variable has three categories: 1=new task,
2=modified rebuy, 3=straight rebuy

http://www.mvstats.com/
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TABLE 1
Canonical Correlation of Credit Usage (Number of Credit Cards and Usage Rate)

with Customer Characteristics (Family Size and Family Income)

Survey Variables
Measures of Credit Usage Measures of Customer Characteristics

• Number of credit cards held • Family size
• Average monthly dollar expenditures • Family income

on credit cards

Canonical Analysis Elements
Canonical

Composite of Dependent Variables Correlation Composite of Independent Variables

____________________________________________________________________________________________________________________

Dependent canonical variate Rc Independent canonical variate
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TABLE 2
Canonical Correlation Analysis Relating Levels of Usage and Satisfaction with HATCO

to Perceptions of HATCO

Measures of Overall Model Fit for
Canonical Correlation Analysis

Canonical Canonical Canonical
Function Correlation R2 F Statistic Probability

1 .937 .878 30.235 .000
2 .510 .260 5.391 .000

Multivariate Tests of Significance

Approximate
Statistic Value F Statistic Probability

Wilks’ lambda .090 30.235 .000
Pillai’s trace 1.138 17.348 .000
Hotelling’s trace 7.535 48.441 .000
Roy’s gcr .878
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TABLE 3
Calculation of the Redundancy Indices for the First Canonical Function

Canonical Canonical Average Canonical Reundancy
Variate/Variables Loading Loading Squared Loading Squared R2 Indexa

Dependent variables
X9 Usage level .913 .834
X10 Satisfaction level .936 .876

Dependent variate 1.710 .855 .878 .751

Independent variables
X1 Delivery speed .764 .584
X2 Price level .061 .004
X3 Price flexibility .624 .389
X4 Manufacturer image .414 .171
X5 Overall service .765 .585
X6 Salesforce image .348 .121
X7 Product quality -.278 .077

Independent variate 1.931 .276 .878 .242

a The redundancy index is calculated as the average loading squared times the canonical R2.
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TABLE 4
Redundancy Analysis of Dependent and Independent Variates for Both Canonical Functions

Standardized Variance of the Dependent Variables Explained by

Their Own The Opposite
Canonical Variate Canonical Variate
(Shared Variance) (Redundancy)

Canonical Cumulative Canonical Cumulative
Function Percentage Percentage R2 Percentage Percentage

1 .855 .855 .878 .751 .751
2 .145 1.000 .260 .038 .789

Standardized Variance of the Independent Variables Explained by

Their Own The Opposite
Canonical Value Canonical Variate
(Shared Variance) (Redundancy)

Canonical Cumulative Canonical Cumulative
Function Percentage Percentage R2 Percentage Percentage

1 .276 .276 .878 .242 .242
2 .082 .358 .260 .021 .263
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TABLE 5
Canonical Weights for the Two Canonical Functions

Canonical Weights

Function 1 Function 2

Standardized canonical coefficients for the independent variables
X1 Delivery speed .225 2.965
X2 Price level .103 2.868
X3 Price flexibility .569 .160
X4 Manufacturer image .348 -1.456
X5 Overall service .445 1.530
X6 Salesforce image -.051 .736
X7 Product quality .001 .478

Standardized canonical coefficients for the dependent variables
X9 Usage level .501 1.330
X10 Satisfaction level .580 -1.298
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TABLE 6
Canonical Structure for the Two Canonical Functions

______________________________________________________________________________________________________________

Canonical Loadings

Function 1 Function 2

Correlations between the independent variables and their canonical variates
X1 Delivery speed .764 .109
X2 Price level .061 .141
X3 Price flexibility .624 .123
X4 Manufacturer image .414 -.626
X5 Overall service .765 .222
X6 Salesforce image .348 -.199
X7 Product quality -.278 .219

Correlations between the dependent variables and their canonical variates
X9 Usage level .913 .408
X10 Satisfaction level .936 -.352

Canonical Cross-Loadingsa

Function 1 Function 2

Correlations between the independent variables and dependent canonical variates
X1 Delivery speed .716 .056
X2 Price level .058 .072
X3 Price flexibility .584 .063
X4 Manufacturer image .388 -.319
X5 Overall service .717 .113
X6 Salesforce image .326 -.102
X7 Product quality -.261 .112

Correlations between the dependent variables and independent canonical variates
X9 Usage level .855 .208
X10 Satisfaction level .877 -.180

aThe canonical cross-loadings are provided by SAS because SPSS does not report the cross-loadings.
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TABLE 7
Sensitivity Analysis of the Canonical Correlation Results to Removal of an Independent Variable

Results after Deletion of

Complete Variate X1 X2 X7

Canonical correlation (R) .937 .936 .937 .937
Canonical root (R2) .878 .876 .878 .878

Independent Variate
Canonical loadings
X1 Delivery speed .764 omitted .765 .764
X2 Price level .061 .062 omitted .061
X3 Price flexibility .624 .624 .624 .624
X4 Manufacturer image .414 .413 .414 .415
X5 Overall service .765 .766 .766 .765
X6 Salesforce image .348 .348 .348 .348
X7 Product quality -.278 -.278 -.278 omitted

Shared variance .276 .225 .322 .309
Redundancy .242 .197 .282 .271

Dependent Variate
Canonical loadings
X9 Usage level .913 .915 .914 .913
X10 Satisfaction level .936 .934 .935 .936

Shared variance .855 .855 .855 .855
Redundancy .750 .749 .750 .750


