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Basic Stats:

A Supplement to
Multivariate Data Analysis

LEARNING OBJECTIVES
In the course of completing this supplement, you will be introduced to the following:

B The basics of simple regression in terms of parameter estimation.

B Determination of statistical significance for both the overall regression model and
individual estimated coefficients.

Differences between the t-test and analysis of variance (ANOVA).

Fundamentals elements of Bayesian Estimation.

Estimation of part-worth values and interaction effects in conjoint analysis.
Calculation of the measure of association or similarity for correspondence analysis.

PREVIEW

This supplement to the text Multivariate Data Analysis provides additional coverage of
some basic concepts that are the foundations for techniques discussed in the text. The
authors felt that readers may benefit from further review of certain topics not covered
in the text, but critical to a complete understanding of some of the multivariate
techniques. There will be some overlap with material in the chapters so as to fully
integrate the concepts.

The supplement is not intended to be a comprehensive “primer” on all of the
fundamental statistical concepts, but only those selected issues that add insight into the
multivariate techniques discussed in the text. We encourage readers to complement
this supplement with other discussions of the basic concepts as needed.

The supplement focuses on concepts related to five multivariate techniques: multiple
regression, multivariate analysis of variance, conjoint analysis, correspondence analysis
and structural equation modeling. For multiple regression, the discussion first focuses
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on the basic process of estimation, from setting the baseline standard to estimating a
regression coefficient. The discussion then address the process of establishing statistical
significance for both the overall regression model, based on the predicted values, and
the individual estimated coefficients. The discussion then shifts to the fundamentals
underlying the t-test and analysis of variance, which are extended in MANOVA. In each
case the basic method of calculation, plus assessing statistical significance, are
discussed. For conjoint analysis, two topics emerge. The first is the process of
estimating part-worths and interaction effects. Simple examples are utilized to
demonstrate the both the process as well as the practical implications. The second
topic is a brief introduction to Bayesian estimation, which is emerging as an estimation
technique quite common in conjoint analysis. Next, the calculation of the chi-square
value and its transformation into a measure of similarity or association for
correspondence analysis is discussed. Emphasis is placed on the rationale of moving
from counts (nonmetric data) to a metric measure of similarity conducive to analysis.
Finally, the path model of SEM is examined as a way to “decomposing” the correlations
between constructs into direct and indirect effects. It should be noted that the
discussion of additional topics associated with structural equation modeling (SEM) are
contained in a separate document available on www.mvstats.com.

KEY TERMS

Before beginning the supplement, review the key terms to develop an understanding of
the concepts and terminology used. Throughout the supplement the key terms appear
in boldface. Other points of emphasis in the chapter and key term cross-references are
italicized.

Alpha (a) Significance level associated with the statistical testing of the differences
between two or more groups. Typically, small values, such as .05 or .01, are specified
to minimize the possibility of making a Type I error.

Analysis of variance (ANOVA) Statistical technique used to determine whether samples
from two or more groups come from populations with equal means (i.e., Do the
group means differ significantly?). Analysis of variance examines one dependent
measure, whereas multivariate analysis of variance compares group differences on
two or more dependent variables.

Chi-square value Method of analyzing data in a contingency table by comparing the
actual cell frequencies to an expected cell frequency. The expected cell frequency is
based on the marginal probabilities of its row and column (probability of a row and
column among all rows and columns).

Coefficient of determination (R?) Measure of the proportion of the variance of the

dependent variable about its mean that is explained by the independent, or
predictor, variables. The coefficient can vary between 0 and 1. If the regression

© Multivariate Data Analysis, Pearson Prentice Hall Publishing Page 5



model is properly applied and estimated, the researcher can assume that the higher
the value of R?, the greater the explanatory power of the regression equation, and
therefore the better the prediction of the dependent variable.

Correlation coefficient (r) Coefficient that indicates the strength of the association
between any two metric variables. The sign (+ or —) indicates the direction of the
relationship. The value can range from +1 to —1, with +1 indicating a perfect positive
relationship, O indicating no relationship, and —1 indicating a perfect negative or
reverse relationship (as one variable grows larger, the other variable grows smaller).

Critical value Value of a test statistic (t test, F test) that denotes a specified significance
level. For example, 1.96 denotes a .05 significance level for the t test with large
sample sizes.

Experimentwide error rate The combined or overall error rate that results from
performing multiple t tests or F tests that are related (e.g., t tests among a series of
correlated variable pairs or a series of t-tests among the pairs of categories in a
multichotomous variable).

Factor Nonmetric independent variable, also referred to as a treatment or experimental
variable.

Intercept (bo) Value on the Y axis (dependent variable axis) where the line defined by
the regression equation Y = by + b1X; crosses the axis. It is described by the constant
term bg in the regression equation. In addition to its role in prediction, the intercept
may have a managerial interpretation. If the complete absence of the independent
variable has meaning, then the intercept represents that amount. For example,
when estimating sales from past advertising expenditures, the intercept represents
the level of sales expected if advertising is eliminated. But in many instances the
constant has only predictive value because in no situation are all independent
variables absent. An example is predicting product preference based on consumer
attitudes. All individuals have some level of attitude, so the intercept has no
managerial use, but it still aids in prediction.

Least squares Estimation procedure used in simple and multiple regression whereby
the regression coefficients are estimated so as to minimize the total sum of the
squared residuals.

Multiple regression Regression model with two or more independent variables.

Null hypothesis Hypothesis with samples that come from populations with equal
means (i.e., the group means are equal) for either a dependent variable (univariate
test) or a set of dependent variables (multivariate test). The null hypothesis can be
accepted or rejected depending on the results of a test of statistical significance.

Part correlation Value that measures the strength of the relationship between a
dependent and a single independent variable when the predictive effects of the
other independent variables in the regression model are removed. The objective is
to portray the unique predictive effect due to a single independent variable among a
set of independent variables. Differs from the partial correlation coefficient, which is
concerned with incremental predictive effect.
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Part-worth Estimate from conjoint analysis of the overall preference or utility
associated with each level of each factor used to define the product or service.

Partial correlation coefficient Value that measures the strength of the relationship
between the criterion or dependent variable and a single independent variable
when the effects of the other independent variables in the model are held constant.
For example, ryx,, x1 measures the variation in Y associated with X, when the effect
of X1 on both X; and Y is held constant. This value is used in sequential variable
selection methods of regression model estimation to identify the independent
variable with the greatest incremental predictive power beyond the independent
variables already in the regression model.

Prediction error Difference between the actual and predicted values of the dependent
variable for each observation in the sample (see residual).

Regression coefficient (b,) Numerical value of the parameter estimate directly
associated with an independent variable; for example, in the model Y = by + b1 X;, the
value b; is the regression coefficient for the variable X;. The regression coefficient
represents the amount of change in the dependent variable for a one-unit change in
the independent variable. In the multiple predictor model (e.g., Y = by + b1 X1 + byX3),
the regression coefficients are partial coefficients because each takes into account
not only the relationships between Y and X; and between Y and X,, but also between
X1 and X,. The coefficient is not limited in range, as it is based on both the degree of
association and the scale units of the independent variable. For instance, two
variables with the same association to Y would have different coefficients if one
independent variable was measured on a 7-point scale and another was based on a
100-point scale.

Residual (e or €) Error in predicting the sample data. Seldom are predictions perfect.
We assume that random error will occur, but that this error is an estimate of the
true random error in the population (&), not just the error in prediction for our
sample (e). We assume that the error in the population we are estimating is
distributed with a mean of 0 and a constant (homoscedastic) variance.

Semipartial correlation See part correlation coefficient.

Significance level (alpha) Commonly referred to as the level of statistical significance,
the significance level represents the probability the researcher is willing to accept
that the estimated coefficient is classified as different from zero when it actually is
not. This is also known as Type I error. The most widely used level of significance is
.05, although researchers use levels ranging from .01 (more demanding) to .10 (less
conservative and easier to find significance).

Similarity Data used to determine which objects are the most similar to each other and
which are the most dissimilar. Implicit in similarities measurement is the ability to
compare all pairs of objects.

Simple regression Regression model with a single independent variable, also known as
bivariate regression.
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Standard error Expected distribution of an estimated regression coefficient. The
standard error is similar to the standard deviation of any set of data values, but
instead denotes the expected range of the coefficient across multiple samples of the
data. It is useful in statistical tests of significance that test to see whether the
coefficient is significantly different from zero (i.e., whether the expected range of
the coefficient contains the value of zero at a given level of confidence). The t value
of a regression coefficient is the coefficient divided by its standard error.

Standard error of the estimate (SEg) Measure of the variation in the predicted values
that can be used to develop confidence intervals around any predicted value. It is
similar to the standard deviation of a variable around its mean, but instead is the
expected distribution of predicted values that would occur if multiple samples of the
data were taken.

Sum of squared errors (SSg) Sum of the squared prediction errors (residuals) across all
observations. It is used to denote the variance in the dependent variable not yet
accounted for by the regression model. If no independent variables are used for
prediction, it becomes the squared errors using the mean as the predicted value and
thus equals the total sum of squares.

t statistic Test statistic that assesses the statistical significance between two groups on
a single dependent variable (see t test). It can be used to assess the difference
between two groups or one group from a specified value. Also tests for the
difference of an estimated parameter (e.g., regression coefficient) from a specified
value (i.e., zero).

t test Test to assess the statistical significance of the difference between two sample
means for a single dependent variable. The t test is a special case of ANOVA for two
groups or levels of a treatment variable.

Total sum of squares (SSt) Total amount of variation that exists to be explained by the
independent variables. This baseline value is calculated by summing the squared
differences between the mean and actual values for the dependent variable across
all observations.

Treatment Independent variable (factor) that a researcher manipulates to see the
effect (if any) on the dependent variables. The treatment variable can have several
levels. For example, different intensities of advertising appeals might be
manipulated to see the effect on consumer believability.

Type | error Probability of rejecting the null hypothesis when it should be accepted,
that is, concluding that two means are significantly different when in fact they are
the same. Small values of alpha (e.g., .05 or .01), also denoted as a, lead to rejection
of the null hypothesis and acceptance of the alternative hypothesis that population
means are not equal.

Type Il error Probability of failing to reject the null hypothesis when it should be
rejected, that is, concluding that two means are not significantly different when in
fact they are different. Also known as the beta () error.
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FUNDAMENTALS OF MULTIPLE REGRESSION

Multiple regression is the most widely used of the multivariate techniques and its
principles are the foundation of so many analytical techniques and applications we see
today. As discussed in Chapter 4, multiple regression is an extension of simple
regression by extending the variate of independent variables from one to multiple
variables. So the principles of simple regression are essential in multiple regression as
well. The following sections provide a basic introduction to the fundamental concepts
of (1) understanding regression model development and interpretation based on the
predictive fit of the independent variable(s), (2) establishing statistical significance of
parameter estimates of the regression model and (3) partitioning correlation among
variables to identify unique and shared effects essential for multiple regression.

THE BASICS OF SIMPLE REGRESSION

The objective of regression analysis is to predict a single dependent variable from the
knowledge of one or more independent variables. When the problem involves a single
independent variable, the statistical technique is called simple regression. When the
problem involves two or more independent variables, it is termed multiple regression.
The following discussion will describe briefly the basic procedure and concepts
underlying simple regression. The discussion will first show how regression estimates
the relationship between independent and dependent variables. The following topics
are covered:

1. Setting a baseline prediction without an independent variable, using only the mean
of the dependent variable

2. Prediction using a single independent variable—simple regression

Setting a Baseline: Prediction Without an Independent Variable

Before estimating the first regression equation, let us start by calculating the baseline
against which we will compare the predictive ability of our regression models. The
baseline should represent our best prediction without the use of any independent
variables. We could use any number of options (e.g., perfect prediction, a prespecified
value, or one of the measures of central tendency, such as mean, median, or mode). The
baseline predictor used in regression is the simple mean of the dependent variable,
which has several desirable properties we will discuss next.
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The researcher must still answer one question: How accurate is the prediction?
Because the mean will not perfectly predict each value of the dependent variable, we
must create some way to assess predictive accuracy that can be used with both the
baseline prediction and the regression models we create. The customary way to assess
the accuracy of any prediction is to examine the errors in predicting the dependent
variable.

Although we might expect to obtain a useful measure of prediction accuracy by
simply adding the errors, this approach would not be useful because the errors from
using the mean value always sum to zero. Therefore, the simple sum of errors would
never change, no matter how well or poorly we predicted the dependent variable when
using the mean. To overcome this problem, we square each error and then add the
results together. This total, referred to as the sum of squared errors (SSg), provides a
measure of prediction accuracy that will vary according to the amount of prediction
errors. The objective is to obtain the smallest possible sum of squared errors as our
measure of prediction accuracy.

We choose the arithmetic average (mean) because it will always produce a smaller
sum of squared errors than any other measure of central tendency, including the
median, mode, any other single data value, or any other more sophisticated statistical
measure. (Interested readers are encouraged to try to find a better predicting value
than the mean.)

Prediction Using a Single Independent Variable: Simple Regression

As researchers, we are always interested in improving our predictions. In the preceding
section, we learned that the mean of the dependent variable is the best predictor if we
do not use any independent variables. As researchers, however, we are searching for
one or more additional variables (independent variables) that might improve on this
baseline prediction. When we are looking for just one independent variable, it is
referred to as simple regression. This procedure for predicting data (just as the average
predicts data) uses the same rule: minimize the sum of squared errors of prediction. The
researcher’s objective for simple regression is to find an independent variable that will
improve on the baseline prediction.

The Role of the Correlation Coefficient Although we may have any number of
independent variables, the question facing the researcher is: Which one to choose? We
could try each variable and see which one gave us the best predictions, but this
approach is quite infeasible even when the number of possible independent variables is
quite small. Rather, we can rely on the concept of association, represented by the
correlation coefficient. Two variables are said to be correlated if changes in one variable
are associated with changes in the other variable. In this way, as one variable changes,
we know how the other variable is changing. The concept of association, represented by
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the correlation coefficient (r), is fundamental to regression analysis by describing the
relationship between two variables.

How will this correlation coefficient help improve our predictions? When we use the
mean as the baseline prediction we should notice one fact: The mean value never
changes. As such, the mean has a correlation of zero with the actual values. How do we
improve on this method? We want a variable that, rather than having just a single value,
has values that are high when the dependent variable is high and low values when the
dependent variable is low. If we can find a variable that shows a similar pattern (a
correlation) to the dependent variable, we should be able to improve on our prediction
using just the mean. The more similar (higher correlation), the better the prediction will
be.

Adding a Constant or Intercept Term In making the prediction of the dependent
variable, we may find that we can improve our accuracy by using a constant in the
regression model. Known as the intercept, it represents the value of the dependent
variable when all of the independent variables have a value of zero. Graphically it
represents the point at which the line depicting the regression model crosses the Y axis,
hence the term intercept.

An illustration of using the intercept term is depicted in Table 1 for some
hypothetical data with a single independent variable X;. If we find that as X; increases by
one unit, the dependent variable increases (on the average) by two, we could then
make predictions for each value of the independent variable. For example, when X; had
a value of 4, we would predict a value of 8 (see Table 1a). Thus, the predicted value is
always two times the value of X; (2X;). However, we often find that the prediction is
improved by adding a constant value. In Table 1a we can see that the simple prediction
of 2 x X; is wrong by 2 in every case. Therefore, changing our description to add a
constant of 2 to each prediction gives us perfect predictions in all cases (see Table 1b).
We will see that when estimating a regression equation, it is usually beneficial to include
a constant, which is termed the intercept.

Estimating the Simple Regression Equation We can select the “best”
independent variable based on the correlation coefficient because the higher the
correlation coefficient, the stronger the relationship and hence the greater the
predictive accuracy. In the regression equation, we represent the intercept as bg. The
amount of change in the dependent variable due to the independent variable is
represented by the term b;, also known as a regression coefficient. Using a
mathematical procedure known as least squares, we can estimate the values of by and
b, such that the sum of the squared errors of prediction is minimized. The prediction
error, the difference between the actual and predicted values of the dependent
variable, is termed the residual (e or g).
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Interpreting the Simple Regression Model With the intercept and regression
coefficient estimated by the least squares procedure, attention now turns to
interpretation of these two values:

e Regression coefficient. Represents the estimated change in the dependent variable
for a unit change of the independent variable. If the regression coefficient is found
to be statistically significant (i.e., the coefficient is significantly different from zero),
the value of the regression coefficient indicates the extent to which the independent
variable is associated with the dependent variable.

e Intercept. Interpretation of the intercept is somewhat different. The intercept has
explanatory value only within the range of values for the independent variable(s).
Moreover, its interpretation is based on the characteristics of the independent
variable:

e Insimple terms, the intercept has interpretive value only if zero is a conceptually
valid value for the independent variable (i.e., the independent variable can have
a value of zero and still maintain its practical relevance). For example, assume
that the independent variable is advertising dollars. If it is realistic that, in some
situations, no advertising is done, then the intercept will represent the value of
the dependent variable when advertising is zero.

e |f the independent value represents a measure that never can have a true value
of zero (e.g., attitudes or perceptions), the intercept aids in improving the
prediction process, but has no explanatory value.

For some special situations where the specific relationship is known to pass through the
origin, the intercept term may be suppressed (called regression through the origin). In
these cases, the interpretation of the residuals and the regression coefficients changes
slightly.

A Simple Example

To illustrate the basic principles of simple regression, we will use the example
introduced in Chapter 4 concerning credit card usage. In our discussion we will repeat
some of the information provided in the chapter so that the reader can see how simple
regression forms the basis for multiple regression.

As described earlier, a small study of eight families investigated their credit card
usage and three other factors that might impact credit card usage. The purpose of the
study was to determine which factors affected the number of credit cards used. The
three potential factors were family size, family income, and number of automobiles
owned. A sample of eight families was used (see Table 2). In the terminology of
regression analysis, the dependent variable (Y) is the number of credit cards used and
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the three independent variables (V1, V>, and V3) are family size, family income, and
number of automobiles owned, respectively.

The arithmetic average (the mean) of the dependent variable (number of credit
cards used) is seven (see Table 3). Our baseline prediction can then be stated as “The
predicted number of credit cards used by a family is seven.” We can also write this
prediction as a regression equation as follows:

Predicted number of credit cards = Average number of credit cards

or
Y=Y

With our baseline prediction of each family using seven credit cards, we overestimate
the number of credit cards used by family 1 by three. Thus, the error is —3. If this
procedure were followed for each family, some estimates would be too high, others
would be too low, and still others might be exactly correct. For our survey of eight
families, using the average as our baseline prediction gives us the best single predictor
of the number of credit cards, with a sum of squared errors of 22 (see Table 3). In our
discussion of simple and multiple regression, we use prediction by the mean as a

baseline for comparison because it represents the best possible prediction without using
any independent variables.

In our survey we also collected information on three measures that could act as
independent variables. We know that without using any of these independent variables,
we can best describe the number of credit cards used as the mean value, 7. But can we
do better? Will one of the three independent variables provide information that enables
us to make better predictions than achieved by using just the mean?

Using the three independent variables we can try to improve our predictions by
reducing the prediction errors. To do so, the prediction errors in the number of credit
cards used must be associated (correlated) with one of the potential independent
variables (Vi1, V5, or V3). If V; is correlated with credit card usage, we can use this
relationship to predict the number of credit cards as follows:

Predicted number of credit cards = Change in number of credit cards used x
Value of V; associated with unit change in V;
or

? = b1V1

Table 4 contains a correlation matrix depicting the association between the
dependent (Y) variable and independent (V;, V,, or V3) variables that can be used in
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selecting the best independent variable. Looking down the first column, we can see that
V., family size, has the highest correlation with the dependent variable and is thus the
best candidate for our first simple regression. The correlation matrix also contains the
correlations among the independent variables, which we will see is important in
multiple regression (two or more independent variables).

We can now estimate our first simple regression model for the sample of eight
families and see how well the description fits our data. The regression model can be
stated as follows:

Predicted number of credit cards used = Intercept +
Change in number of credit cards used
associated with a unit change in family
Size x
Family Size
or

?:bo‘}' b1V1

For this example, the appropriate values are a constant (by) of 2.87 and a regression
coefficient (b1) of .97 for family size.

Our regression model predicting credit card holdings indicates that for each
additional family member, the credit card holdings are higher on average by .97. The
constant 2.87 can be interpreted only within the range of values for the independent
variable. In this case, a family size of zero is not possible, so the intercept alone does not
have practical meaning. However, this impossibility does not invalidate its use, because
it aids in the prediction of credit card usage for each possible family size (in our example
from 1 to 5). The simple regression equation and the resulting predictions and residuals
for each of the eight families are shown in Table 5.

Because we have used the same criterion (minimizing the sum of squared errors
or least squares), we can determine whether our knowledge of family size helps us
better predict credit card holdings by comparing the simple regression prediction with
the baseline prediction. The sum of squared errors using the average (the baseline) was
22; using our new procedure with a single independent variable, the sum of squared
errors decreases to 5.50 (see Table 5). By using the least squares procedure and a single
independent variable, we see that our new approach, simple regression, is markedly
better at predicting than using just the average.
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This is a basic example of the process underlying simple regression. The
discussion of multiple regression extends this process by adding additional independent
variables to improve prediction.

ESTABLISHING STATISTICAL SIGNIFICANCE

Because we used only a sample of observations for estimating a regression equation, we
can expect that the regression coefficients will vary if we select another sample of
observations and estimate another regression equation. We don’t want to take
repeated samples, so we need an empirical test to see whether the regression
coefficient we estimated has any real value (i.e., is it different from zero?) or could we
possibly expect it to equal zero in another sample. To address this issue, regression
analysis allows for the statistical testing of the intercept and regression coefficient(s) to
determine whether they are significantly different from zero (i.e., they do have an
impact that we can expect with a specified probability to be different from zero across
any number of samples of observations).

Assessing Prediction Accuracy

If the sum of squared errors (SSg) represents a measure of our prediction errors, we
should also be able to determine a measure of our prediction success, which we can
term the sum of squares regression (SSg). Together, these two measures should equal
the total sum of squares (SSt), the same value as our baseline prediction. As the
researcher adds independent variables, the total sum of squares can now be divided
into (1) the sum of squares predicted by the independent variable(s), which is the sum
of squares regression (SSg), and (2) the sum of squared errors (SSg)

Zn:(yl' —-y)? = zn:(yl' —y)? + Zn:(yi - y)?
=1 i=1 i=1

SST = SSE + SSR

where
y = average of all observations
y; = value of individual observation i

y; = predicted value of observation i
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We can use this division of the total sum of squares to approximate how much
improvement the regression variate makes in describing the dependent variable. Recall
that the mean of the dependent variable is our best baseline estimate. We know that it
is not an extremely accurate estimate, but it is the best prediction available without
using any other variables. The question now becomes: Does the predictive accuracy
increase when the regression equation is used rather than the baseline prediction? We
can quantify this improvement by the following:

Sum of squares total (baseline prediction) SSrotal SSt
—Sum of squares error (simple regression) —SSerror or  SSe
Sum of squares explained (simple SSRegression SSk

regression)

The sum of squares explained (SSg) thus represents an improvement in prediction over
the baseline prediction. Another way to express this level of prediction accuracy is the
coefficient of determination (R%), the ratio of the sum of squares regression to the total
sum of squares, as shown in the following equation:

Sum of squares regression

Coefficient of determination (R?) = Total sum of Squares

If the regression model perfectly predicted the dependent variable, R = 1.0. But if it
gave no better predictions than using the average (baseline prediction), R* = 0. Thus, the
R* value is a single measure of overall predictive accuracy representing the following:

e The combined effect of the entire variate in prediction, even when the regression
equation contains more than one independent variable

e Simply the squared correlation of the actual and predicted values

When the coefficient of correlation (r) is used to assess the relationship between
dependent and independent variables, the sign of the correlation coefficient (-r, +r)
denotes the slope of the regression line. However, the strength of the relationship is
represented by R?, which is, of course, always positive. When discussions mention the
variation of the dependent variable, they are referring to this total sum of squares that
the regression analysis attempts to predict with one or more independent variables.
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Establishing a Confidence Interval for the Regression Coefficients and the Predicted

Value

With the expected variation in the intercept and regression coefficient across
samples, we must also expect the predicted value to vary each time we select another
sample of observations and estimate another regression equation. Thus, we would like
to estimate the range of predicted values that we might expect, rather than relying just
on the single (point) estimate. The point estimate is our best estimate of the dependent
variable for this sample of observations and can be shown to be the average prediction
for any given value of the independent variable.

From this point estimate, we can also calculate the range of predicted values across
repeated samples based on a measure of the prediction errors we expect to make.
Known as the standard error of the estimate (SEg), this measure can be defined simply
as the expected standard deviation of the prediction errors. For any set of values of a
variable, we can construct a confidence interval for that variable about its mean value
by adding (plus and minus) a certain number of standard deviations. For example,
adding +1.96 standard deviations to the mean defines a range for large samples that
includes 95 percent of the values of a variable.

We can follow a similar method for the predictions from a regression model. Using a
point estimate, we can add (plus and minus) a certain number of standard errors of the
estimate (depending on the confidence level desired and sample size) to establish the
upper and lower bounds for our predictions made with any independent variable(s). The
standard error of the estimate (SEg) is calculated by

Sum of squared errors

SEp =
E Sample size — 2

The number of SEgs to use in deriving the confidence interval is determined by the level
of significance (a) and the sample size (N), which give a t value. The confidence interval
is then calculated with the lower limit being equal to the predicted value minus (SEg x t
value) and the upper limit calculated as the predicted value plus (SEg x t value).

Significance Testing in the Simple Regression Example

Testing for the significance of a regression coefficient requires that we first understand
the hypotheses underlying the regression coefficient and constant. Then we can
examine the significance levels for the coefficient and constant.
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Understanding the Hypotheses When Testing Regression Coefficients. A simple
regression model implies hypotheses about two estimated parameters: the constant
and regression coefficient.

Hypothesis 1. The intercept (constant term) value is due to sampling error and
thus the estimate of the population value is zero.

Hypothesis 2. The regression coefficient indicating an increase in the independent
variable is associated with a change in the dependent variable also does not
differ significantly from zero.

Assessing the Significance Level. The appropriate test is the t test, which is
commonly available on regression analysis programs. The t value of a coefficient is the
coefficient divided by the standard error. Thus, the t value represents the number of
standard errors that the coefficient is different from zero. For example, a regression
coefficient of 2.5 with a standard error of .5 would have a t value of 5.0 (i.e., the
regression coefficient is 5 standard errors from zero). To determine whether the
coefficient is significantly different from zero, the computed t value is compared to the
table value for the sample size and confidence level selected. If our value is greater than
the table value, we can be confident (at our selected confidence level) that the
coefficient does have a statistically significant effect in the regression variate.

Most programs calculate the significance level for each regression coefficient’s t
value, showing the significance level at which the confidence interval would include
zero. The researcher can then assess whether this level meets the desired level of
significance. For example, if the statistical significance of the coefficient is .02, then we
would say it was significant at the .05 level (because it is less than .05), but not
significant at the .01 level.

From a practical point of view, significance testing of the constant term is necessary
only when used for explanatory value. If it is conceptually impossible for observations to
exist with all the independent variables measured at zero, the constant term is outside
the data and acts only to position the model.

The researcher should remember that the statistical test of the regression
coefficient and the constant is to ensure—across all the possible samples that could be
drawn—the estimated parameters would be different from zero within a specified level
of acceptable error.
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Significance Testing in the Credit Card Example

In our credit card example, the baseline prediction is the average number of credit cards
held by our sampled families and is the best prediction available without using any other
variables. The baseline prediction using the mean was measured by calculating the
squared sum of errors for the baseline (sum of squares = 22). Now that we have fitted a
regression model using family size, does it explain the variation better than the average?
We know it is somewhat better because the sum of squared errors is now reduced to
5.50. We can look at how well our model predicts by examining this improvement.

Sum of squares total (baseline prediction) SStotal SSt 22.0
—Sum of squares error (simple regression) —SSkrror or SSg -5.5
Sum of squares explained (simple regression) SSRegression SSr 16.5

Therefore, we explained 16.5 squared errors by changing from the average to the simple
regression model using family size. It is an improvement of 75 percent (16.5 + 22 = .75)
over the baseline. We thus state that the coefficient of determination (Rz) for this
regression equation is .75, meaning that it explained 75 percent of the possible variation
in the dependent variable. Also remember that the R* value is simply the squared
correlation of the actual and predicted values.

For our simple regression model, SEr equals +.957 (the square root of the value
of 5.50 divided by 6). The confidence interval for the predictions is constructed by
selecting the number of standard errors to add (plus and minus) by looking in a table for
the t distribution and selecting the value for a given confidence level and sample size. In
our example, the t value for a 95% confidence level with 6 degrees of freedom (sample
size minus the number of coefficients, or 8 — 2 = 6) is 2.447. The amount added (plus
and minus) to the predicted value is then (.957 x 2.447), or 2.34. If we substitute the
average family size (4.25) into the regression equation, the predicted value is 6.99 (it
differs from the average of 7 only because of rounding). The expected range of credit
cards becomes 4.65 (6.99 — 2.34) to 9.33 (6.99 + 2.34). The confidence interval can be
applied to any predicted value of credit cards.

The regression equation for credit card usage seen earlier was:
Y= bo + b1V1
or

Y =2.87 + .971(family size)
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This simple regression model requires testing two hypotheses for the each estimated
parameter (the constant value of 2.87 and the regression coefficient of .971). These
hypotheses (commonly called the null hypothesis) can be stated formally as:

Hypothesis 1. The intercept (constant term) value of 2.87 is due to sampling
error, and the real constant term appropriate to the population is zero.

Hypothesis 2. The regression coefficient of .971(indicating that an increase of one
unit in family size is associated with an increase in the average number of credit
cards held by .971) also does not differ significantly from zero.

With these hypotheses, we are testing whether the constant term and the regression
coefficient have an impact different from zero. If they are found not to differ
significantly from zero, we would assume that they should not be used for purposes of
prediction or explanation.

Using the t test for the simple regression example, we can assess whether either
the constant or the regression coefficient is significantly different from zero. In this
example, the intercept has no explanatory value because in no instances do all
independent variables have values of zero (e.g., family size cannot be zero). Thus,
statistical significance is not an issue in interpretation. If the regression coefficient is
found to occur solely because of sampling error (i.e., zero fell within the calculated
confidence interval), we would conclude that family size has no generalizable impact on
the number of credit cards held beyond this sample. Note that this test is not one of any
exact value of the coefficient but rather of whether it has any generalizable value
beyond this sample.

In our example, the standard error of family size in the simple regression model
is .229. The calculated t value is 4.24 (calculated as .971 + .229), which has a probability
of .005. If we are using a significance level of .05, then the coefficient is significantly
different from zero. If we interpret the value of .005 directly, it means that we can be
sure with a high degree of certainty (99.5%) that the coefficient is different from zero
and thus should be included in the regression equation.

Summary of Significance Testing

Significance testing of regression coefficients provides the researcher with an empirical
assessment of their “true” impact. Although it is not a test of validity, it does determine
whether the impacts represented by the coefficients are generalizable to other samples
from this population. One note concerning the variation in regression coefficients is that
many times researchers forget that the estimated coefficients in their regression
analysis are specific to the sample used in estimation. They are the best estimates for
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that sample of observations, but as the preceding results showed, the coefficients can
vary quite markedly from sample to sample. This potential variation points to the need
for concerted efforts to validate any regression analysis on a different sample(s). In
doing so, the researcher must expect the coefficients to vary, but the attempt is to
demonstrate that the relationship generally holds in other samples so that the results
can be assumed to be generalizable to any sample drawn from the population.

CALCULATING UNIQUE AND SHARED VARIANCE AMONG INDEPENDENT VARIABLES

The basis for estimating all regression relationships is the correlation, which measures
the association between two variables. In regression analysis, the correlations between
the independent variables and the dependent variable provide the basis for forming the
regression variate by estimating regression coefficients (weights) for each independent
variable that maximize the prediction (explained variance) of the dependent variable.
When the variate contains only a single independent variable, the calculation of
regression coefficients is straightforward and based on the bivariate (or zero order)
correlation between the independent and dependent variables. The percentage of
explained variance of the dependent variable is simply the square of the bivariate
correlation.

The Role of Partial and Part Correlations

As independent variables are added to the variate, however, the calculations must
also consider the intercorrelations among independent variables. If the independent
variables are correlated, then they share some of their predictive power. Because we
use only the prediction of the overall variate, the shared variance must not be double
counted by using just the bivariate correlations. Thus, we calculate two additional forms
of the correlation to represent these shared effects:

1. The partial correlation coefficient is the correlation of an independent (X;) and
dependent (Y) variable when the effects of the other independent variable(s) have
been removed from both X;and Y.

2. The part or semipartial correlation reflects the correlation between an independent
and dependent variable while controlling for the predictive effects of all other
independent variables on Xi.

The two forms of correlation differ in that the partial correlation removes the effects of
other independent variables from X; and Y, whereas the part correlation removes the
effects only from X;. The partial correlation represents the incremental predictive effect
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of one independent variable from the collective effect of all others and is used to
identify independent variables that have the greatest incremental predictive power
when a set of independent variables is already in the regression variate. The part
correlation represents the unique relationship predicted by an independent variable
after the predictions shared with all other independent variables are taken out. Thus,
the part correlation is used in apportioning variance among the independent variables.
Squaring the part correlation gives the unique variance explained by the independent
variable.

The figure below portrays the shared and unique variance among two correlated
independent variables.

/ \

/ww&
\ >< /

a = variance of ¥ uniquely explained by X
b = variance of ¥ uniquely explained by X,
¢ = variance of ¥ explained jointly by X; and X,
d = variance of ¥ not explained by X, or X3

The variance associated with the partial correlation of X, controlling for X; can be
represented as b + (d + b), where d + b represents the unexplained variance after
accounting for Xi. The part correlation of X, controlling for Xy is b+ (a + b + ¢ + d), where
a + b + c + d represents the total variance of ¥, and b is the amount uniquely explained
by X3.

The analyst can also determine the shared and unique variance for independent
variables through simple calculations. The part correlation between the dependent
variable (Y) and an independent variable (X;) while controlling for a second independent
variable (X,) is calculated by the following equation:

Part correlation of Y, X;, given X,
_ Corrof Y,X; — (Corrof Y,X; X Corr of X1,X;)

V1.0 — (Corr of X1, X,)
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A simple example with two independent variables (X; and X;) illustrates the
calculation of both shared and unique variance of the dependent variable (Y). The direct
correlations and the correlation between X; and X, are shown in the following
correlation matrix:

Y X1 X2
y 1.0
X, .60 1.0
X .50 .70 1.0

The direct correlations of .60 and .50 represent fairly strong relationships with Y, but
the correlation of .70 between X; and X, means that a substantial portion of this
predictive power may be shared. The part correlation of X; and Y controlling for X,
(fv.x(x,)) and the unique variance predicted by X; can be calculated as:

.60 — (.50 x .70)
Ty x,(X;) = T0- 70 = .35

Thus, the unique variance predicted by X; = .35 = .1225

Because the direct correlation of X1 and Y is .60, we also know that the total variance
predicted by X; is .60°, or .36. If the unique variance is .1225, then the shared variance
must be .2375 (.36 —.1225).

We can calculate the unique variance explained by X> and confirm the amount of
shared variance by the following:

.50 — (.60 x .70)
Ty x,(X1) = 0= 02 = .11

From this calculation, the unique variance predicted by X, = .11° = .0125

With the total variance explained by X, being .50% or .25, the shared variance is
calculated as .2375 (.25 — .0125). This result confirms the amount found in the
calculations for X;. Thus, the total variance (R?) explained by the two independent
variables is

Unique variance explained by X; 1225
Unique variance explained by X, .0125
Shared variance explained by X; and X .2375
Total variance explained by X; and X, .3725
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These calculations can be extended to more than two variables, but as the number of
independent variables increases, it is easier to allow the statistical programs to perform
the calculations. The calculation of shared and unique variance illustrates the effects of
multicollinearity on the ability of the independent variables to predict the dependent
variable.

FUNDAMENTALS OF MANOVA

The following discussion addresses the two most common types of univariate
procedures for assessing group differences, the t-test, which compares a dependent
variable across two groups, and ANOVA, which is used whenever the number of groups
is two or more. These two techniques are the basis on which we extend the testing of
multiple dependent variables between groups in MANOVA.

THE t-TEST

The t-test assesses the statistical significance of the difference between two
independent sample means for a single dependent variable. In describing the basic
elements of the t test and other tests of group differences, we will address two topics:
design of the analysis and statistical testing.

Analysis Design

The difference in group mean scores is the result of assigning observations (e.g.,
respondents) to one of the two groups based on their value of a nonmetric variable
known as a factor (also known as a treatment). A factor is a nonmetric variable, many
times employed in an experimental design where it is manipulated with prespecified
categories or levels that are proposed to reflect differences in a dependent variable. A
factor can also just be an observed nonmetric variable, such as gender. In either
instance, the analysis is fundamentally the same.

An example of a simple experimental design will be used to illustrate such an
analysis. A researcher is interested in how two different advertising messages—one
informational and the other emotional—affect the appeal of the advertisement. To
assess the possible differences, two advertisements reflecting the different appeals are
prepared. Respondents are then randomly selected to receive either the informational
or emotional advertisement. After examining the advertisement, each respondent is
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asked to rate the appeal of the message on a 10-point scale, with 1 being poor and 10
being excellent.

The two different advertising messages represent a single experimental factor with
two levels (informational versus emotional). The appeal rating becomes the dependent
variable. The objective is to determine whether the respondents viewing the
informational advertisement have a significantly different appeal rating than those
viewing the advertisement with the emotional message. In this instance the factor was
experimentally manipulated (i.e., the two levels of message type were created by the
researcher), but the same basic process could be used to examine difference on a
dependent variable for any two groups of respondents (e.g., male versus female,
customer versus noncustomer, etc.). With the respondents assigned to groups based on
their value of the factor, the next step is to assess whether the differences between the
groups in terms of the dependent variable are statistically significant.

Statistical Testing

To determine whether the treatment has an effect (i.e., Did the two advertisements
have different levels of appeal?), a statistical test is performed on the differences
between the mean scores (i.e., appeal rating) for each group (those viewing the
emotional advertisements versus those viewing the informational advertisements).

Calculating the t Statistic The measure used is the t statistic, defined in this case as
the ratio of the difference between the sample means (u; — ;) to their standard error.
The standard error is an estimate of the difference between means to be expected
because of sampling error. If the actual difference between the group means is
sufficiently larger than the standard error, then we can conclude that these differences
are statistically significant. We will address what level of the t statistic is needed for
statistical significance in the next section, but first we can express the calculation in the
following equation:

U1 — Uz

SEH1#2

t statistic =

where
U1 = mean of group 1
U> = mean of group 2

SEu1u, = standard error of the difference in group means
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In our example of testing advertising messages, we would first calculate the mean
score of the appeal rating for each group of respondents (informational versus
emotional) and then find the difference in their mean scores (Minformational — Hemotional). BY
forming the ratio of the actual difference between the means to the difference expected
due to sampling error (the standard error), we quantify the amount of the actual impact
of the treatment that is due to random sampling error. In other words, the t value, or t
statistic, represents the group difference in terms of standard errors.

Interpreting the t Statistic How large must the t value be to consider the difference
statistically significant (i.e., the difference was not due to sampling variability, but
represents a true difference)? This determination is made by comparing the t statistic to
the critical value of the t statistic (t.it). We determine the critical value (t.) for our t
statistic and test the statistical significance of the observed differences by the following
procedure:

1. Compute the t statistic as the ratio of the difference between sample means to their
standard error.

2. Specify a Type | error level (denoted as alpha, B, or significance level), which
indicates the probability level the researcher will accept in concluding that the group
means are different when in fact they are not.

3. Determine the critical value (t.i) by referring to the t distribution with Ny + N, — 2
degrees of freedom and a specified & level, where N; and N, are sample sizes.
Although the researcher can use the statistical tables to find the exact value, several
typical values are used when the total sample size (N; + N,) is at least greater than
50. The following are some widely used a levels and the corresponding t.; values:

a (Significance)

Level t.it Value
10 16;‘

05 2'9

01 .58

4. If the absolute value of the computed t statistic exceeds t.i, the researcher can
conclude that the two groups do exhibit differences in group means on the
dependent measure (i.e., U = ay), with a Type | error probability of a. The researcher
can then examine the actual mean values to determine which group is higher on the
dependent value.

The computer software of today provides the calculated t value and the
associated significance level, making interpretation even easier. The researcher
merely needs to see whether the significance level meets or exceeds the specified
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Type | error level set by the researcher.

The t-test is widely used because it works with small group sizes and is quite easy to
apply and interpret. It does face a couple of limitations: (1) it only accommodates two
groups; and (2) it can only assess one independent variable at a time. To remove either
or both of these restrictions, the researcher can utilize analysis of variance, which can
test independent variables with more than two groups as well as simultaneously
assessing two or more independent variables.

ANALYSIS OF VARIANCE

In our example for the t-test, a researcher exposed two groups of respondents to
different advertising messages and subsequently asked them to rate the appeal of the
advertisements on a 10-point scale. Suppose we are interested in evaluating three
advertising messages rather than two. Respondents would be randomly assigned to one
of three groups, resulting in three sample means to compare. To analyze these data, we
might be tempted to conduct separate t-tests for the difference between each pair of
means (i.e., group 1 versus group 2; group 1 versus group 3; and group 2 versus group
3).

However, multiple t-tests inflate the overall Type | error rate (we discuss this issue in
more detail in the next section). Analysis of variance (ANOVA) avoids this Type | error
inflation due to making multiple comparisons of treatment groups by determining in a
single test whether the entire set of sample means suggests that the samples were
drawn from the same general population. That is, ANOVA is used to determine the
probability that differences in means across several groups are due solely to sampling
error.

Analysis Design

ANOVA provides considerably more flexibility in testing for group differences than found
in the t-test. Even though a t-test can be performed with ANOVA, the researcher also
has the ability to test for differences between more than two groups as well as test
more than one independent variable. Factors are not limited to just two levels, but
instead can have as many levels (groups) as desired. Moreover, the ability to analyze
more than one independent variable enables the researcher more analytical insight into
complex research questions that could not be addressed by analyzing only one
independent variable at a time.
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With this increased flexibility comes additional issues, however. Most important is
the sample size requirements from increasing either the number of levels or the number
of independent variables. For each group, a researcher may wish to have a sample size
of 20 or so observations. As such, increasing the number of levels in any factor requires
an increase in sample size. Moreover, analyzing multiple factors can create a situation of
large sample size requirements rather quickly. Remember, when two or more factors
are included in the analysis, the number of groups formed is the product of the number
of levels, not their sum (i.e., Number of groups = Number of Levelsgictor 1 X Number of
Levelsractor2). A simple example illustrates the issue.

The two levels of advertising message (informational and emotional) would require
a total sample of 50 if the researcher desired 25 respondents per cell. Now, let’s assume
that a second factor is added for the color of the advertisement with three levels (1 =
color, 2 = black-and-white, and 3 = combination of both). If both factors are now
included in the analysis, the number of groups increases to six (Number of groups = 2 x
3) and the sample size increases to 150 respondents (Sample size = 6 groups x 25
respondents per group). So we can see that adding even just a three-level factor can
increase the complexity and sample required.

Thus, researchers should be careful when determining both the number of levels for
a factor as well as the number of factors included, especially when analyzing field
surveys, where the ability to get the necessary sample size per cell is much more
difficult than in controlled settings.

Statistical Testing

The logic of an ANOVA statistical test is fairly straightforward. As the name analysis of
variance implies, two independent estimates of the variance for the dependent variable
are compared. The first reflects the general variability of respondents within the groups
(MSw) and the second represents the differences between groups attributable to the
treatment effects (MSg):

e Within-groups estimate of variance (MSw: mean square within groups): This
estimate of the average respondent variability on the dependent variable within a
treatment group is based on deviations of individual scores from their respective
group means. MSy is comparable to the standard error between two means
calculated in the t test as it represents variability within groups. The value MSy is
sometimes referred to as the error variance.

e Between-groups estimate of variance (MSg: mean square between groups): The
second estimate of variance is the variability of the treatment group means on the
dependent variable. It is based on deviations of group means from the overall grand
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mean of all scores. Under the null hypothesis of no treatment effects (i.e., py = Y, =
U3 = ... = W), this variance estimate, unlike MSy, reflects any treatment effects that
exist; that is, differences in treatment means increase the expected value of MSg.
Note that any number of groups can be accommodated.

Calculating the F Statistic. The ratio of MSg to MSy is a measure of how much
variance is attributable to the different treatments versus the variance expected from
random sampling. The ratio of MSg to MSyy is similar in concept to the t value, but in this
case gives us a value for the F statistic.

MS,

w

F statistic =

Because differences between the groups inflate MSg, large values of the F statistic lead
to rejection of the null hypothesis of no difference in means across groups. If the
analysis has several different treatments (independent variables), then estimates of MS;
are calculated for each treatment and F statistics are calculated for each treatment. This
approach allows for the separate assessment of each treatment.

Interpreting the F Statistic. To determine whether the F statistic is sufficiently large
to support rejection of the null hypothesis (meaning that differences are present
between the groups), follow a process similar to the t test:

1. Determine the critical value for the F statistic (F..it) by referring to the F distribution
with (k—1) and (N — k) degrees of freedom for a specified level of @ (where N = N; +.
..+ Ny and k = number of groups). As with the t test, a researcher can use certain F
values as general guidelines when sample sizes are relatively large.

These values are just the t.; value squared, resulting in the following values:

a (Significance)
Level F.it Value
10 268
05 3.8
01 6.63

2. Calculate the F statistic or find the calculated F value provided by the computer
program.

3. If the value of the calculated F statistic exceeds Fgi;, conclude that the means across
all groups are not all equal. Again, the computer programs provide the F value and
the associated significance level, so the researcher can directly assess whether it
meets an acceptable level.
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Examination of the group means then enables the researcher to assess the relative
standing of each group on the dependent measure. Although the F statistic test assesses
the null hypothesis of equal means, it does not address the question of which means are
different. For example, in a three-group situation, all three groups may differ
significantly, or two may be equal but differ from the third. To assess these differences,
the researcher can employ either planned comparisons or post hoc tests.

FUNDAMENTALS OF CONJOINT ANALYSIS

Conjoint analysis represents a somewhat unique analytical technique among
multivariate methods due to use of repeated responses from each respondent. As such,
it presents unique estimation issues in deriving model estimates for each individual. The
following sections describe not only the process of estimating part-worths, but also the
approach use in identifying interaction effects in the results.

ESTIMATING PART-WORTHS

How do we estimate the part-worths for each level when we have only rankings or
ratings of the stimuli? In the following discussion we examine how the evaluations of
each stimulus can be used to estimate the part-worths for each level and ultimately
define the importance of each attribute as well.

Assuming that a basic model (an additive model) applies, the impact of each
level is calculated as the difference (deviation) from the overall mean ranking. (Readers
may note that this approach is analogous to multiple regression with dummy variables
or ANOVA.)

We can apply this basic approach to all factors and calculate the part-worths of each
level in four steps:

Step 1:Square the deviations and find their sum across all levels.

Step 2: Calculate a standardizing value that is equal to the total number of levels
divided by the sum of squared deviations.

Step 3:Standardize each squared deviation by multiplying it by the standardizing
value.
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Step 4: Estimate the part-worth by taking the square root of the standardized
squared deviation.

We should note that these calculations are done for each respondent separately and the
results from one respondent do not affect the results for any other respondent. This
approach differs markedly from such techniques as regression or ANOVA where we deal
with correlations across all respondents or group differences.

A Simple Example

To illustrate a simple conjoint analysis, we can examine the responses for
respondent 1. If we first focus on the rankings for each attribute, we see that the
rankings for the stimuli with the phosphate-free ingredients are the highest possible (1,
2, 3, and 4), whereas the phosphate-based ingredient has the four lowest ranks (5, 6, 7,
and 8). Thus, a phosphate-free ingredient is clearly preferred over a phosphate-based
cleanser. These results can be contrasted to rankings for each brand level, which show a
mixture of high and low rankings for each brand.

For example, the average ranks for the two cleanser ingredients (phosphate-free
versus phosphate-based) for respondent 1 are:

Phosphate-free: (1+2+3+4)/4=25
Phosphate-based: (5+6+7+8)/4=6.5

With the average rank of the eight stimuliof4.5[(1+2+3+4+5+6+7+8)/8=36/8=
4.5], the phosphate-free level would then have a deviation of —2.0 (2.5 — 4.5) from the
overall average, whereas the phosphate-based level would have a deviation of +2.0 (6.5
— 4.5). The average ranks and deviations for each factor from the overall average rank
(4.5) for respondents 1 and 2 are given in Table A-6.

In this example, we use smaller numbers to indicate higher ranks and a more
preferred stimulus (e.g., 1 = most preferred). When the preference measure is inversely
related to preference, such as here, we reverse the signs of the deviations in the part-
worth calculations so that positive deviations will be associated with part-worths
indicating greater preference.

Let us examine how we would calculate the part-worth of the first level of
ingredients (phosphate-free) for respondent 1 following the four step process described
earlier. The calculations for each step are as follows:
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Step 1: The deviations from 2.5 are squared. The squared deviations are summed
(10.5).

Step 2: The number of levels is 6 (three factors with two levels apiece). Thus, the
standardizing value is calculated as .571 (6/10.5 = .571).

Step 3: The squared deviation for phosphate-free (2° = 4; remember that we
reverse signs) is then multiplied by .571 to get 2.284 (2° x .571 = 2.284).

Step 4: Finally, to calculate the part-worth for this level, we then take the square
root of 2.284, for a value of 1.1511. This process yields part-worths for each level
for respondents 1 and 2, as shown in Table A-7.

ESTIMATING INTERACTION EFFECTS ON PART-WORTH ESTIMATES

Interactions are first identified by unique patterns within the preference scores of a
respondent. If they are not included in the additive model, they can markedly affect the
estimated preference structure. We will return to our industrial cleanser example to
illustrate how interactions are reflected in the preference scores of a respondent.

Obtaining Preference Evaluations

In our earlier example of an industrial cleanser, we can posit a situation where
the respondent makes choices in which interactions appear to influence the
choices. Assume a third respondent made the following preference ordering:

Rankings of Stimuli Formed by Three Factors (1 =
most preferred, 8 = least preferred)

Form

Liquid  Powder

Brand Ingredients

HBAT Phosphate-Free
Phosphate-Based

A o A~ N

1

3

Generic  Phosphate-Free 7
Phosphate-Based 5
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Assume that the “true” preference structure for this respondent should reflect a
preference for the HBAT brand, liquid over powder, and phosphate-free over
phosphate-based cleansers. However, a bad experience with a generic cleanser
made the respondent select phosphate-based over phosphate-free only if it was
a generic brand. This choice “goes against” the general preferences and is
reflected in an interaction effect between the factors of brand and ingredients.

Estimating the Conjoint Model

If we utilize only an additive model, we obtain the following part-worth estimates:

Part-Worth Estimates for Respondent 3: Additive Model

Form Ingredients Brand

Liquid Powder Phosphate- Phosphate- HBAT  Generic
Free Based

42 -42 0.0 0.0 1.68 -1.68

When we examine the part-worth estimates, we see that the values have been
confounded by the interaction. Most noticeably, both levels in the ingredients factor
have part-worths of 0.0, yet we know that the respondent actually preferred phosphate-
free. The estimates are misleading because the main effects of brand and ingredients
are confounded by the interactions shown by the reversal of the preference order when
the generic brand was involved.

The impact extends past just the part-worth estimates, as we can see how it also
affects the overall utility scores and the predicted rankings for each stimulus. The
following table compares the actual preference ranks with the calculated and predicted
ranks using the additive model.
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HBAT Generic
Phosphate-Free  Phosphate-Based Phosphate-Free Phosphate-Based

Liquid Powder Liquid Powder Liquid Powde Liquid Powder
r

Actual Rank 1 2 3 4 7 8 5 6
Calculated Utility 2.10 1.26 2.10 1.26 -1.26 -2.10 -1.26 -2.10
Predicted Rank® 1.5 3.5 1.5 3.5 5.5 7.5 5.5 7.5

®Higher utility scores represent higher preference and thus higher rank. Also, tied ranks are
shown as mean rank (e.g., two stimuli tied for 1 and 2 are given rank of 1.5).

The predictions are obviously less accurate, given that we know interactions exist. If
we were to proceed with only an additive model, we would violate one of the
principal assumptions and potentially make quite inaccurate predictions.

Identifying Interactions

Examining for first-order interactions is a reasonably simple task with two steps. Using
the previous example with three factors, we will illustrate each step:

e Form 3 two-way matrices of preference order. In each matrix, sum the two
preference orders for the third factor.

For example, the first matrix might be the combinations of form and ingredients
with each cell containing the sum of the two preferences for brand. We illustrate the
process with two of the possible matrices here:

Matrix 1° Matrix 2°
Form Ingredients
Brand Liguid Powder Phosphate- Phosphate-Based
Free
HBAT 1+3 2+4 1+2 3+4
Generic 7+5 8+6 7+8 5+6
®Values are the two preference rankings for Ingredients.
®Values are the two preference rankings for Form.
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e To check for interactions, the diagonal values are then added and the difference is
calculated. If the total is zero, then no interaction exists.

For matrix 1, the two diagonals both equal 18 (1+3 +8 + 6 =7 + 5+ 2 + 4). But in matrix
2, the total of the diagonals is not equal (1+2 + 5+ 6 # 7 + 8 + 3+ 4). This difference
indicates an interaction between brand and ingredients, just as described earlier. The
degree of difference indicates the strength of the interaction.

As the difference becomes greater, the impact of the interaction increases, and it is up
to the researcher to decide when the interactions pose enough problems in prediction
to warrant the increased complexity of estimating coefficients for the interaction terms.

BAsic CONCEPTS IN BAYESIAN ESTIMATION

The use of Bayesian estimation has found its way into many of the multivariate
techniques we have discussed in the text: factor analysis, multiple regression,
discriminant analysis, logistic regression, MANOVA, cluster analysis and structural
equation modeling, it has found particular use in conjoint analysis. While it is beyond
the scope of this section to detail the advantages of using Bayesian estimation or its
statistical principles, we will discuss in general terms how the process works in
estimating the probability of an event.

Let’s examine a simple example to illustrate how this approach works in
estimating the probability of an event happening. Assume that a firm is trying to
understand the impact of their Loyalty program in getting individuals to purchase an
upgraded warranty program. The question involves whether to continue to support the
Loyalty program as a way to increased purchases of the upgrades. A survey of customers
found the following results:

Likelihood Probability of:

Purchasing an Not Purchasing

Type of Customer Upgrade an Upgrade
Member of Loyalty Program .40 .60
Not in the Loyalty Program .10 .90
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If we just look at these results, we see that members of the Loyalty program are 4 times
as likely as nonmembers to purchase an upgrade. This figure represents the likelihood
probability (i.e., the probability of purchasing an upgrade based on the type of
customer) that we can estimate directly from the data.

The likelihood probability is only part of the analysis, because we still need to
know one more probability: How likely are customers to join the Loyalty program? This
prior probability describes the probability of any single customer joining the Loyalty
program.

If we estimate that 10 percent of our customers are members of the Loyalty
program, we can now estimate the probabilities of any type of customer purchasing an
upgrade. We do so by multiplying the prior probability times the likelihood probability
to obtain the joint probability. For our example, this calculation results in the following:

JOINT PROBABILITIES OF PURCHASING AN UPGRADE

Joint Probability
Type of Customer Prior Probability Purchase No Purchase Total
Member of Loyalty Program 10% .04 .06 .10
Not in Loyalty Program 90% .09 .81 .90
Total A3 .87 1.00

Now we can see that even though members of the Loyalty program purchase upgrades
at a much higher rate than nonmembers, the relatively small proportion of customers in
the Loyalty program (10%) makes them a minority of upgrade purchasers. As a matter of
fact, Loyalty program members only purchase about 30 percent (.04 + .13 = .307) of the
upgrades.

Bayesian estimation provides advantages in certain situations in that we can
estimate the two probabilities using different assumptions and/or sets of respondents.
For example, when we can assume that there is heterogeneity among respondents, we
can “divide” the probability of an outcome into a probability general to the entire
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sample and then use individual-level data to try and estimate more unique effects for
each individual. The robustness of Bayesian estimation plus its ability to handle
heterogeneity among the respondents has made it a popular alternative to the
conventional estimation procedure in many multivariate techniques.

FUNDAMENTALS OF CORRESPONDENCE ANALYSIS

Correspondence analysis is a unique multivariate technique in that it uses only non-
metric data. While researchers may have a preference for use of metric data because of
the greater amount of information that can be conveyed, the practical reality is that a
large number of many research situations involve non-metric data. This creates a need
for some form of multivariate analysis that provides the researcher a method of
analyzing and portraying the association between these types of measures.

The following section details the process of creating a measure of association
that is the basis for correspondence analysis. It is based on one of the most basic of
statistical concepts — chi square. We describe briefly how a chi-square measure is
calculated in a simple example and then its transformation into a measure of association
for individual categories of two or more nonmetric variables.

CALCULATING A MEASURE OF ASSOCIATION OR SIMILARITY

Correspondence analysis uses one of the most basic statistical concepts, chi-square, to
standardize the cell frequency values of the contingency table and form the basis for
association or similarity. Chi-square is a standardized measure of actual cell frequencies
compared to expected cell frequencies. In cross-tabulated data, each cell contains the
values for a specific row/column combination. An example of cross-tabulated data
reflecting product sales (Product A, B or C) by age category (Young Adults, Middle Age or
Mature Individuals) is shown in Table 8. The chi-square procedure proceeds in four
steps to calculate a chi-square value for each cell and then transform it into a measure
of association.

Step 1: Calculate Expected Sales

The first step is to calculate the expected value for a cell as if no association existed. The
expected sales are defined as the joint probability of the column and row combination.
This joint probability is calculated as the marginal probability for the column (column
total + overall total) times the marginal probability for the row (row total + overall total).
This value is then multiplied by the overall total. For any cell, the expected value can be
simplified to the following equation:
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Column total of cell x Row total of cell

Expected cell count = Overall total

This calculation represents the expected cell frequency given the proportions for
the row and column totals. In our simple example, the expected sales for Young Adults
buying Product A is 21.82 units, as shown in the following calculation:

60 x 80

Expected SaleSYoung Adults,Product A = W = 21.82

This calculation is performed for each cell, with the results shown in Table 9. The
expected cell counts provide a basis for comparison with the actual cell counts and
allow for the calculation of a standardized measure of association used in constructing
the perceptual map.

Step 2: Difference in Expected and Actual Cell Counts

The next step is to calculate the difference between the expected and actual cell counts
as follows:

Difference = Expected cell count — Actual cell count

The amount of difference denotes the strength of the association and the sign (positive
for less association than expected and negative for greater association than expected)
represented in this value. It is important to note that the sign is actually reversed from
the type of association—a negative sign means positive association (actual cell counts
exceeded expected), and vice versa.

Again, in our example of the cell for Young Adults purchasing Product A, the
difference is 1.82 (21.82 — 20.00). The positive difference indicates that the actual sales
are lower than expected for this age group—product combination, meaning fewer sales
than would be expected (a negative association). Cells in which negative differences
occur indicate positive associations (that cell actually bought more than expected). The
differences for each cell are also shown in Table 9.
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Step 3: Calculate the Chi-Square Value

The final step is to standardize the differences across cells so that comparisons can be
easily made. Standardization is required because it would be much easier for differences
to occur if the cell frequency was high compared to a cell with only a few sales. So we
standardize the differences to form a chi-square value by dividing each squared
difference by the expected sales value. Thus, the chi-square value for a cell is calculated
as:

Dif ference?

Chi — X? =
L — square ( )for ace Expected cell count

For our example cell, the chi-square value would be:

(1822

. 2
Chi square (X )Young Adults,Product A o 21.82 =15

The calculated values for the other cells are also shown in Table 9.

Step 4: Create a Measure of Association

The final step is to convert the chi-square value into a similarity measure. The chi-
square value denotes the degree or amount of similarity or association, but the process
of calculating the chi-square (squaring the difference) removes the direction of the
similarity. To restore the directionality, we use the sign of the original difference. In
order to make the similarity measure more intuitive (i.e., positive values are greater
association and negative values are less association) we also reverse the sign of the
original difference. The result is a measure that acts just like the similarity measures
used in earlier examples. Negative values indicate less association (similarity) and
positive values indicate greater association.

In our example, the chi-square value for Young Adults purchasing Product A of
.15 would be stated as a similarity value of —.15 because the difference (1.82) was
positive. This added negative sign is necessary because the chi-square calculation
squares the difference, which eliminates the negative signs. The chi-square values for
each cell are also shown in Table 9.
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The cells with large positive similarity values (indicating a positive association)
are Young Adults/Product B (17.58), Middle Age/Product A (11.62), and Mature
Individuals/Product C (12.10). Each of these pairs of categories should be close together
on a perceptual map. Cells with large negative similarity values (meaning that expected
sales exceeded actual sales, or a negative association) were Young Adults/Product C (—
1.94), Middle Age/Product B (-2.47), and Mature Individuals/Product A (-1.17). Where
possible, these categories should be far apart on the map.

SUMMARY

Correspondence analysis provides a means of portraying the relationships between
objects based on cross-tabulation data. In doing so, the researcher can utilize
nonmetric data in ways comparable to the metric measures of similarity underlying
multidimensional scaling (MDS).

FUNDAMENTALS OF STRUCTURAL EQUATION MODELING

The use of SEM is predicated on a strong theoretical model by which latent constructs
are defined (measurement model) and these constructs are related to each other
through a series of dependence relationships (structural model). The emphasis on
strong theoretical support for any proposed model underlies the confirmatory nature of
most SEM applications.

But many times overlooked is exactly how the proposed structural model is
translated into structural relationships and how their estimation is interrelated. Path
analysis is the process wherein the structural relationships are expressed as direct and
indirect effects in order to facilitate estimation. The importance of understanding this
process is not so that the research can understand the estimation process, but instead
to understand how model specification (and respecification) impacts the entire set of
structural relationships. We will first illustrate the process of using path analysis for
estimating relationships in SEM analyses. Then we will discuss the role that model
specification has in defining direct and indirect effects and classification of effects as
causal versus spurious. We will see how this designation impacts the estimation of
structural model.
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ESTIMATING RELATIONSHIPS USING PATH ANALYSIS

What was the purpose of developing the path diagram? Path diagrams are the basis for
path analysis, the procedure for empirical estimation of the strength of each
relationship (path) depicted in the path diagram. Path analysis calculates the strength of
the relationships using only a correlation or covariance matrix as input. We will describe
the basic process in the following section, using a simple example to illustrate how the
estimates are actually computed.

Identifying Paths

The first step is to identify all relationships that connect any two constructs. Path
analysis enables us to decompose the simple (bivariate) correlation between any two
variables into the sum of the compound paths connecting these points. The number and
types of compound paths between any two variables are strictly a function of the model
proposed by the researcher.

A compound path is a path along the arrows of a path diagram that follow three
rules:

1. After going forward on an arrow, the path cannot go backward again; but the path
can go backward as many times as necessary before going forward.

2. The path cannot go through the same variable more than once.

3. The path can include only one curved arrow (correlated variable pair).

When applying these rules, each path or arrow represents a path. If only one arrow
links two constructs (path analysis can also be conducted with variables), then the
relationship between those two is equal to the parameter estimate between those two
constructs. For now, this relationship can be called a direct relationship. If there are
multiple arrows linking one construct to another as in X 2 Y = Z, then the effect of X on
Z seem quite complicated but an example makes it easy to follow:

The path model below portrays a simple model with two exogenous constructs (X3
and X;) causally related to the endogenous construct (Y;). The correlational path A is X;
correlated with X5, path B is the effect of X; predicting Y3, and path C shows the effect of

X, predicting Y;. o
B
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The value for Y; can be stated simply with a regression-like equation:

Y1 - b1X1 + b2X1

We can now identify the direct and indirect paths in our model. For ease in referring to
the paths, the causal paths are labeled A, B, and C.

Direct Paths Indirect Paths
A=X;toX;

B=X,toY; AC=X,toY;
C=XtoY; AB=X,toY;

Estimating the Relationship

With the direct and indirect paths now defined, we can represent the correlation
between each construct as the sum of the direct and indirect paths. The three unique
correlations among the constructs can be shown to be composed of direct and indirect
paths as follows:

Coerl X2 — A
COTer Y1 — B + AC

COTTXZ Y1 — C + AB

First, the correlation of X; and X; is simply equal to A. The correlation of X; and Y;
(Corrxyy1) can be represented as two paths: B and AC. The symbol B represents the
direct path from X; to Y;, and the other path (a compound path) follows the curved
arrow from X; to X; and then to Y;. Likewise, the correlation of X, and Y; can be shown
to be composed of two causal paths: C and AB.

Once all the correlations are defined in terms of paths, the values of the
observed correlations can be substituted and the equations solved for each separate
path. The paths then represent either the causal relationships between constructs
(similar to a regression coefficient) or correlational estimates.

Assuming that the correlations among the three constructs are as follows: Corry;
x2 = .50, Corrx; y1 = .60 and Corry, y1 = .70, we can solve the equations for each
correlation (see below) and estimate the causal relationships represented by the
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coefficients b1 and b,. We know that A equals .50, so we can substitute this value into
the other equations. By solving these two equations, we get values of B(b;) = .33 and
C(b,) = .53. This approach enables path analysis to solve for any causal relationship
based only on the correlations among the constructs and the specified causal model.

Solving for the Structural Coefficients

50=A
.60=B+AC
.70=C+AB
Substituting A = .50
.60 =B +.50C
.70=C+ .50B
Solving for B and C
B=.33
C=.53

As you can see from this simple example, if we change the path model in some way,
the causal relationships will change as well. Such a change provides the basis for
modifying the model to achieve better fit, if theoretically justified.

With these simple rules, the larger model can now be modeled simultaneously,
using correlations or covariances as the input data. We should note that when used in a
larger model, we can solve for any number of interrelated equations. Thus, dependent
variables in one relationship can easily be independent variables in another relationship.
No matter how large the path diagram gets or how many relationships are included,
path analysis provides a way to analyze the set of relationships.

UNDERSTANDING DIRECT AND INDIRECT EFFECTS

While path analysis plays a key role in estimating the effects represented in a structural
model, it also provides additional insight into not only the direct effects of one construct
versus another, but all of the myriad set of indirect effects between any two constructs.
While direct effects can always be considered causal if a dependence relationship is
specified, indirect effects require further examination to determine if they are causal
(directly attributable to a dependence relationship) or non-causal (meaning that they
represent relationship between constructs, but it cannot be attributed to a specific
causal process).

Identification of Causal versus Non-Causal effects

The prior section discussed the process of identifying all of the direct and indirect effects
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between any two constructs by a series of rules for compound paths. Here we will
discuss how to categorize them into causal versus non-causal and then illustrate their
use in understanding the implications of model specification.

An important question is: Why is the distinction important? The parameter
estimates are made without any distinction as described above. But the estimated
parameters in the structural model reflect only the direct effect of one construct on
another. What about all of the indirect effects, which can be substantial? Just because a
construct is not directly related to another construct does not mean that there is no
impact. Thus, we need a method to distinguish between these myriad types of indirect
effects and be able to understand if we can infer any dependence relationship (causal)
attributable to them even though they are indirect.

Assume we are identifying the possible effects of A > B. Causal effects are of
two types: a direct causal effect ( A = B) or an indirect causal effect (A > C 2> B). In
either the direct or indirect compound path, only dependence relationships are present
and the direction of the relationships is never reversed. Non-causal (sometimes referred
to as spurious effects) can arise from three conditions: common effects (C 2 A and C
- B), correlated effects ( C = A and C is correlated with B) and reciprocal effects ( A 2>
and B 2 A).

Decomposing Effects into Causal versus Noncausal

We will use a simple example of four constructs all related to each other (see Table 10).
We can see that there are only direct dependence relationships in this example (i.e., no
correlational relationships among exogenous constructs). So we might presuppose that
all of the effects (direct and indirect) would be causal as well. But as we will see, that is
not the case. The total set of effects for each relationship is shown in Table 10.

C; 2 C,. Let’s start with the simple relationship between C; and C,. Using the
rules for identifying compound paths earlier, we can see that there is only one possible
effect — the direct effect of C; on C,. There are no possible indirect or noncausal effects,
so the path estimate for P, ; represents the total effects of C; on C,.

C; 2 Cs. The next relationship is C; with C3. Here we can see two effects: the
direct effect (P3;) and the indirect effect (P32 x P,1). Since the direction of the paths
never reverses in the indirect effect, it can be categorized as causal. So the direct and
indirect effects are both causal effects.

C, = Cs. This relationship introduces the first noncausal effects we have seen.
There is the direct effect of Bs,, but there is also the noncausal effect (due to common
cause) seen in B3; x By;. Here we see the result of two causal effects creating a
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noncausal effect since they both originate from a common construct (C; 2 C; and C; 2
Cs).

C: 2 C4 In this relationship we will see the potential for numerous indirect
causal effects in addition to direct effects. In addition to the direct effect (B 4,1), we see
three other indirect effects that are also causal: B4 X By,1; B43 X B33 ; and Bs3 x B3 2x By 5.

C; 2 C4. This final relationship we will examine has only one causal effects (B
4,2), but four different noncausal effects, all a result of C; or C, acting as common
causes. The two noncausal effects associated with C; are B4; x B3; and B3 x B21 x Bsp.
The two other noncausal effects are associated with C; (B 42X B3, and B4, x By1 X B31).

The remaining relationship is C; = C4. See if you can identify the causal and
noncausal effects. Hint: There are all three types of effects — direct and indirect causal
effects and noncausal effects as well.

Calculating Indirect Effects

In the previous section we discussed the identification and categorization of both direct
and indirect effects for any pair of constructs. The next step is to calculate the amount
of the effect based on the path estimates of the model. For our purposes, assume this
path model with estimates as follows:

For the relationship between C1 = C4, there are both direct and indirect effects. The
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direct effects are shown directly by the path estimate P¢yc; = .20. But what about the
indirect effects? How are they calculated?

The size of an indirect effect is a function of the direct effects that make it up.
SEM software typically produces a table showing the total of the indirect effects implied
by a model. But to see the size of each effect you can compute them by multiplying the
direct effects in the compound path.

For instance, one of the indirect effects for C1 = C4 is Pcyc1 X Pcaco. We can
then calculate the amount of this effect as .50 x .40 = .20. Thus, the complete set of
indirect effects for C1 = C4 can be calculated as follows:

Pca,c1 X Peaca = .50%.40=.20
Pcsc1 X Peacs= .40x.30=.12
Pca,c1 X Pesca X Pea,cz =.50 % .20 x .30 = .03
Total Indirect Effects =.20 +.12 +.03 = .35

So in this example, the total effect of C1 = C4 equals the direct and indirect effects, or
.20 + .35 = .55, It is interesting to note that in this example the indirect effects are
greater than the direct effects.

Impact of Model Respecification

The impact of model respecification on both the parameter estimates and the
causal/noncausal effects can be seen in our example as well. Look back at the C; 2> C,4
relationship. What happens if we eliminate the C1 = C4 relationship? Does it impact
the C3 - C4 relationship in any way? If we look back at the indirect effects, we can see
that two of the four noncausal effects would be eliminated (Bs; x B3;; and Bs1 x B1 X
Bs,). How would this impact the model? If these effects were substantial but
eliminated when the C; =2 C; path was eliminated, then most likely the C3 2 C,4
relationship would be underestimated, resulting in a larger residual for this covariance
and overall poorer model fit. Plus, a number of other effects that used this path would
be eliminated as well. This illustrates how the removal or addition of a path in the
structural model can impact not only that direct relationship (e.g., C; = Cs), but many
other relationships as well.
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SUMMARY

The path model not only represents the structural relationships between constructs, but
also provides a means of depicting the direct and indirect effects implied in the
structural relationships. A “working knowledge” of the direct and indirect effects of any
path model gives the researcher not only the basis for understanding the foundations of
model estimation, but also insight into the “total” effects of one construct upon
another. Moreover, the indirect effects can be further subdivided into casual and non-
causal/spurious to provide greater specificity into the types of effects involved. Finally,
an understanding of the indirect effects allows for greater understanding of the
implications of model respecification, either through addition or deletion of a direct
relationship.
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TABLE 1 Improving Prediction Accuracy by Adding an Intercept in a Regression Equation

(A) PREDICTION WITHOUT THE INTERCEPT

Prediction Equation: Y =2X;

Dependent Variable Prediction  Prediction Error

Value of X;

1 4 2 2
) 6 4 2
3 8 6 2
4 10 8 2
5 12 10 2

(B) PREDICTION WITH AN INTERCEPT OF 2.0

Prediction Equation: Y =2.0+2X;

Value of X, Variable Dependent Prediction  Prediction Error
1 4 4 0
2 6 6 0
3 8 8 0
4 10 10 0
5 12 12 0
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TABLE 2 Credit Card Usage Survey Results

Number of Family Number of
Credit Cards Income ($000) Automobiles
Family ID Used (Y) Family Size (V) (V2) Owned (V3)
4 2 14 1
1
2 6 2 16 2
3 6 4 14 2
4 7 4 17 1
5 8 5 18 3
6 7 5 21 2
7 8 6 17 1
8 10 6 25 2

TABLE 3 Baseline Prediction Using the Mean of the Dependent Variable

Regression Variate: Y=y
Prediction Equation: y=7
Number of Credit Baseline Prediction Prediction Error

Family ID Cards Used Prediction® Error® Squared
1 4 7 -3 9
) 6 7 -1 1
3 6 7 -1 1
4 7 7 0 0
5 8 7 +1 1
6 7 7 0 0
7 8 7 +1 1
8 10 7 +3 9
Total 26 0 22

®Average number of credit cards used =56 +8 = 7.
®Prediction error refers to the actual value of the dependent variable minus the predicted value.
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TABLE 4 Correlation Matrix for the Credit Card Usage Study

Variable Vi V, Vs
v Number of Credit Cards Used
v Family Size 1.000
1
v, Family Income .673 1.000
Vs Number of Automobiles .192 .301 1.000

TABLE 5 Simple Regression Results Using Family Size as the Independent Variable

Regression Variate: Y=bo+ bk
Prediction Equation: Y=2.87+.97V;

Number of Simple Prediction

Credit Cards Family Size Regression Prediction Error
Family ID Used (V1) Prediction Error Squared
1 4 2 4.81 -.81 .66
2 6 2 4.81 1.19 1.42
3 6 4 6.75 -.75 .56
4 7 4 6.75 .25 .06
5 8 5 7.72 .28 .08
6 7 5 7.72 =72 .52
7 8 6 8.69 —-.69 48
3 10 6 8.69 1.31 1.72
Total 5.50
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TABLE 6 Average Ranks and Deviations for Respondent 1

Factor Level per Ranks Across Average Deviation from Overall
Attribute Stimuli Rank of Level Average Rank®
Form

Liquid 1,256 3.5 -1.0

Powder 3,4,7,8 5.5 +1.0
Ingredients

Phosphate-free 1,234 2.5 -2.0

Phosphate-based 5,6,7,8 6.5 +2.0
Brand

HBAT 1,3,57 4.0 -5

i 2, 4; 6; 8 50 +_5
Generic

®Deviation calculated as Deviation = Average rank of level — Overall average rank (4.5).
Note that negative deviations imply more preferred rankings.
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TABLE 7 Estimated Part-Worths and Factor Importance for Respondent 1

Estimating Part-Worths Calculating Factor
Importance
Reversed Squared  Standardized Estimated Range of Factor
Factor Level Deviation® Deviation Deviation® Part-Worth® Part- Worths Importanced
Form
Liquid +1.0 1.0 +.571 +.756 1.512 28.6%
Powder -1.0 1.0 -.571 —-.756
Ingredients
Phosphate-free +2.0 4.0 +2.284 +1.511 3.022 57.1%
Phosphate-based -2.0 4.0 —2.284 -1.511
Brand
HBAT +.5 .25 +.143 +.378 .756 14.3%
Generic -5 .25 -.143 -.378
Sum of Squared Deviations 10.5
Standardizing Value® =71
5.290

Sum of Part-Worth Ranges

®Deviations are reversed to indicate higher preference for lower ranks. The sign of deviation is used to indicate sign of estimated part-worth.
®Standardized deviation is equal to the squared deviation times the standardizing value.

“Estimated part-worth is equal to the square root of the standardized deviation.

Factor importance is equal to the range of a factor divided by the sum of ranges across all factors, multiplied by 100 to get a percentage.
®Standardizing value is equal to the number of levels (2 + 2 + 2 = 6) divided by the sum of the squared deviations.
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TABLE 8 Cross-Tabulated Data Detailing Product Sales by Age Category

Product Sales
Age Category A B c Total
Young Adults 20 20 20 60
Middle Age 40 10 40 90
Mature Individuals 20 10 40 70
Total 80 40 100 220
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TABLE 9 Calculating Chi-Square Similarity Values for Cross-Tabulated Data

Product Sales
A B C Total
Age Category
Young Adults
20 20 20 60
Sales
25% 50% 20% 27%
Column Percentage
33% 33% 33% 100%
Row Percentage
21.82 10.91 27.27 60
Expected Sales®
b 1.82 -9.09 7.27 —
Difference
.15 7.58 1.94 9.67
Chi-Square Value®
Middle Age
40 10 40 90
Sales
50% 25% 40% 41%
Column Percentage
44% 11% 44% 100%
Row Percentage
32.73 16.36 40.91 90
Expected Sales
. -7.27 6.36 .91 —
Difference
. 1.62 2.47 .02 4.11
Chi-Square Value
Mature Individuals
20 10 40 70
Sales
25% 25% 40% 32%
Column Percentage
29% 14% 57% 100%
Row Percentage
25.45 12.73 31.82 70
Expected Sales
i 5.45 2.73 -8.18 -
Difference
. 1.17 .58 2.10 3.85
Chi-Square Value
Total
80 40 100 220
Sales
100% 100% 100% 100%
Column Percentage
36% 18% 46% 100%
Row Percentage
80 40 100 220
Expected Sales
Difference N - N N
2.94 10.63 4.06 17.63

Chi-Square Value

aExpected sales = (Row total x Column total) / Overall total
Example: Ce”Young Adults, Product A = (60 x 80) / 220 = 21.82

bpifference = Expected sales — Actual sales
Example: Ce”Young Adults, Product A = 21.82-20.00=1.82

o
Chi-Square Value
Example: Cellyoung Adults, Product A = 1.82% /21.82 = .15
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Table 10 Identifying Direct and Indirect Effects

Effects
Relationship Direct (Causal) Indirect (Causal) Indirect (Noncausal)
C > C P2,1 None None
C1 > C3 P3,1 P3,2 X P2,1 None
Cz > C3 P3,2 None P3,1 x P 2,1
C]_ > C4 P4’1 P4’2 X P2,1 None
Pa3Xx P31
Pa3XP32XPaa
C3 - C4 P4'3 None P4’1 X P3,1
Pa1XPy1xP3;
Pa2 X P3;

Pa2 X Py1xP31
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