
CHAPTER S-1 

Canonical Correlation  

LEARNING OBJECTIVES 

Upon completing this chapter, you should be able to do the following: 

 Describe canonical correlation analysis and understand its purpose. 

 State the similarities and differences between multiple regression, discriminant analysis, factor 

analysis, and canonical correlation. 

 Summarize the conditions that must be met for application of canonical correlation analysis. 

 Define and compare canonical root measures and the redundancy index. 

 Compare the advantages and disadvantages of the three methods for interpreting the nature of 

canonical functions. 

 

CHAPTER PREVIEW 

In the previous chapter, we introduced multiple regression, a technique that predicts a single metric 

dependent variable from a linear function of a set of several independent variables. For some re-

search problems, however, interest may not center on a single dependent variable. Instead, the re-

searcher may be interested in relationships between sets of multiple dependent and multiple inde-

pendent variables. Canonical correlation analysis is the answer for this kind of research problem. It 

is a method that enables the assessment of the relationship between two sets of multiple variables. 

Application of canonical correlation analysis has increased as the software has become more 

widely available. Even though it is less popular than many other methods, examples of canonical 

correlation analysis are found across various disciplines and in many business studies. For example, 



canonical analysis was used to examine the relationships between product innovation strategies and 

market orientation [12] and between adoption of outsourcing services and the characteristics of en-

vironments in which the services operate [3]. Canonical correlation analysis will continue to be a 

useful technique for situations involving multiple independent and multiple dependent variables. 

In applying canonical analysis, it is helpful to think of one set of variables as independent and 

the other set as dependent. Use of the terms independent variables and dependent variables, however, does 

not imply that they share a causal relationship. Instead, it simply refers to how the two sets of multi-

ple variables correlate. As discussed in Chapter 1, canonical correlation analysis is considered a gen-

eral model on which many other multivariate techniques are based because it can use both metric 

and nonmetric data for either the dependent or independent variables. The general form of canoni-

cal analysis can be expressed as: 
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This chapter introduces the researcher to the multivariate statistical technique of canonical cor-

relation analysis. We first describe the nature of canonical correlation analysis and then summarize a 

six-step procedure and guidelines for judging the appropriateness of the method. We then illustrate 

the application and interpretation of canonical correlation analysis with an example from the HBAT 

database. The chapter also summarizes the potential advantages and limitations of the technique. 

 

KEY TERMS 

Before starting the chapter, review the key terms to develop an understanding of the concepts and 

terminology used. Throughout the chapter the key terms appear in boldface. Other points of em-

phasis in the chapter are italicized and cross-references within the Key Terms appear in italics.  



Canonical correlation coefficient   Measures the strength of the overall relationship between the 

two linear composites (canonical variates), one variate for the independent variables and one for the 

dependent variables. In effect, it represents the bivariate correlation between the two canonical vari-

ates in a canonical function. 

Canonical cross-loadings   Correlation of each observed independent or dependent variable with 

the opposite canonical variate. For example, the independent variables are correlated with the de-

pendent canonical variate. They can be interpreted like canonical loadings, but with the opposite ca-

nonical variate. 

Canonical function   Relationship (correlational) between two linear composites (canonical variates). 

Each canonical function has two canonical variates, one for the set of dependent variables and one 

for the set of independent variables. The strength of the relationship is given by the canonical correla-

tion coefficient. 

Canonical loading   Simple linear correlation between the independent variables and their respec-

tive canonical variates. These can be interpreted like factor loadings; they are also known as canonical 

structure correlations. Each independent variable has different canonical loadings for each canonical 

function. 

Canonical roots   Squared canonical correlation coefficients, which provide an estimate of the amount of 

shared variance between the respective canonical variates of dependent and independent variables. 

Also known as eigenvalues. 

Canonical structure correlations   See canonical loading. 

Canonical variates   Linear combinations that represent the optimally weighted sum of two or 

more variables and are formed for both the dependent and independent variables in each canonical 

function. Also referred to as linear composites, linear compounds, and linear combinations. 

Eigenvalues   See canonical roots. 



Linear composites   See canonical variates. 

Orthogonal   Mathematical constraint specifying that the canonical functions are statistically inde-

pendent of each other. This is similar to orthogonal factor analysis. 

Redundancy index   Amount of variance in a canonical variate (dependent or independent) ex-

plained by the other canonical variate in the canonical function. It can be computed for both the 

dependent and the independent canonical variates in each canonical function. For example, a redun-

dancy index of the dependent variate represents the amount of variance in the dependent variables 

explained by the independent canonical variate. 

 

WHAT IS CANONICAL CORRELATION? 

Canonical correlation analysis is a multivariate statistical model that facilitates the study of linear in-

terrelationships between two sets of variables. One set of variables is referred to as independent varia-

bles and the others are considered dependent variables [8, 9]; a canonical variate is formed for each set. 

It may be helpful to think of a canonical variate as being like the variate (i.e., linear composite) 

formed from the set of independent variables in a multiple regression analysis. But in canonical cor-

relation there is also a variate formed from several dependent variables whereas multiple regression 

can accommodate only one dependent variable. Canonical correlation analysis develops a canonical 

function that maximizes the canonical correlation coefficient between the two canonical variates. 

The canonical correlation coefficient measures the strength of the relationship between the two ca-

nonical variates. Each canonical variate is interpreted with canonical loadings, the correlation of 

the individual variables and their respective variates. Canonical loadings are similar to the factor 

loadings of each variable and the factors that were described in factor analysis (see Chapter 3). So in 

a sense this is analogous to estimating a separate factor for each set of variables in order to maximize 

the correlation between factors. A canonical function between the sets of independent and depend-



ent variables and their variates is shown in Figure S1-1. 

Another unique characteristic of canonical correlation is that it develops multiple canonical 

functions. Each canonical function is independent (orthogonal) from the other canonical functions 

so that they represent different relationships found among the sets of dependent and independent 

variables. The canonical loadings of the individual variables differ in each canonical function and 

represent that variable’s contribution to the specific relationship being depicted. Extending the sim-

ple example above, each canonical function consists of a different pair of variates (one for the inde-

pendent variables and the other for the dependent variables), each function representing a different 

relationship between the sets of variables. The researcher retains and interprets all of the statistically 

significant canonical functions. Here we see the development of different canonical functions as 

somewhat analogous to the discriminant functions in discriminant analysis in which each represents 

a different dimension of discrimination in the dependent variable (see Chapter 7). 

Canonical correlation analysis has several advantages for researchers. First, canonical correla-

tion analysis limits the probability of committing Type I errors. The risk of a Type I error is related 

to the likelihood of finding a statistically significant result when it does not exist. Increased risk of 

Type I error results from when the same variables in a data set are used for too many statistical tests. 

If a researcher wants to see if four X variables can predict six Y variables through multiple regres-

sion, then a series of six regression equations are required (i.e., one for each dependent variable). But 

using separate statistical significance tests for each equation substantially increases the risk of Type I 

error. Canonical correlation can assess these relationships between the two set of variables (inde-

pendent and dependent) in a single relationship rather than using separate relationships for each de-

pendent variable. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 Second, canonical correlation analysis may better reflect the reality of research studies. The 

complexity of research studies involving human and/or organizational behavior may suggest multi-

ple variables that represent a concept and thus create problems when the variables are examined 

separately. In the example above, canonical correlation would represent a relationship between the 

sets of variables rather than individual variables. Moreover, it can identify two or more unique rela-

tionships, if they exist. Thus canonical correlation analysis is both technically able to analyze the data 

involving multiple sets of variables and is theoretically consistent with that purpose [16]. 

 

HYPOTHETICAL EXAMPLE OF CANONICAL CORRELATION 

To further explain the nature of canonical correlation, let us consider an extension of the regression 

example used in Chapter 4. Recall the small survey that used family size and income as predictors of 

FIGURE S1-1  Relationship of Variables and Canonical Loadings with the Canonical        

Variates in the Canonical Function 

 



the number of credit cards a family would hold. That problem involved examining the relationship 

between two independent variables and a single dependent variable. 

Developing a Variate of Dependent Variables 

Suppose the researcher is now interested in the broader concept of credit card usage, especially how 

consumer characteristics and credit history can predict credit card usage. To measure credit card us-

age, not only is the number of credit cards held by the family taken into consideration, but also the 

family’s average monthly dollar spending on all credit cards and the outstanding balances of all cred-

it cards. These three measures are believed to give a much better perspective on a family’s credit 

card usage. Readers interested in other approaches to using multiple indicators to represent a con-

cept are referred to Chapter 3 (“Factor Analysis”) and Chapter 11 (“Structural Equation Modeling”). 

The problem now involves predicting three dependent measures simultaneously (number of credit 

cards, average monthly dollar spending, and outstanding balance). Multiple regression is capable of 

handling only a single dependent variable. Discriminant analysis is also unsuitable because its de-

pendent variable must be nonmetric. Canonical correlation is therefore the only technique available 

for examining relationships with multiple dependent variables. 

The problem of predicting credit card usage is illustrated in Figure S1-2. The three dependent 

variables used to measure credit card usage—number of credit cards held by the family, average 

monthly dollar expenditures on all credit cards, and outstanding balance—are shown on the right. 

The three independent variables selected to predict credit usage—family size, family income, and 

credit history—are shown on the left. By using canonical correlation analysis, the researcher creates 

a composite measure of credit usage that consists of three dependent variables, rather than having to 

compute a separate regression equation for each of the dependent variables. 

Estimating the First Canonical Function 

Estimation of the first canonical function (see top portion of Figure S1-3) provides the researcher 



with two items of particular interest. The first is the two canonical variates representing the optimal 

linear combinations of the dependent or independent variables and the canonical correlation coeffi-

cient (Rc) representing the relationship between them.  

 

 

 

More about how to interpret the variate with the canonical loadings will be discussed in later sec-

tions, but for now we can use high loadings as an indication of the most descriptive variables for a 

variate. The first function is between the variate of independent variables characterized by family 

size and family income (e.g., perhaps described as household characteristics) and the variate of de-

pendent variables characterized by the number of cards and average monthly dollar spending. The 

dependent variate could perhaps be described as the tendency for convenience when using credit 

cards. 

 

 

 

 

FIGURE S1-2  Canonical Relationship Between Consumer Characteristics and Their 

Credit Card Usage 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second item of interest is the canonical correlation coefficient, which measures the correla-

tion between the two variates. In the case of the first function, the canonical correlation coefficient 

is .92, indicating a fairly high degree of association between the two variates. When squared, the ca-

nonical correlation represents the amount of shared variance between the two canonical variates. 

Squared canonical correlations are called canonical roots or eigenvalues: 
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FIGURE S1-3  Canonical Loadings and Correlations for the Two Canonical Functions 

of the Hypothetical Example 

 



where 

  
Rc

n
 canonical correlation for the nth  canonical function  

In our credit card example, the canonical correlation coefficient of the first canonical function is 

0.92, which corresponds to a canonical root of 0.85 (i.e., .922 = .85). 

The researcher might also be interested in knowing how much variance in the independent var-

iate is explained by the dependent variate, and vice versa. This differs from the canonical root be-

cause each variate accounts for only a portion of the variance of its variables. Thus, although two 

variates might have a squared correlation of .80, it does not mean that each variable is explained in 

this amount. Instead, a variable is explained only to the degree that it relates to the variate (i.e., its 

canonical loading). So to determine the “explained” variance in the actual variable, we must take in-

to account not only the canonical root, but also the canonical loadings of the variable. The Stewart-

Love redundancy index [14] was developed to represent the amount of variance in one set of vari-

ables that can be explained by the variables in the other set. This index serves as a measure of ac-

counted-for or explained variance, similar to the R2 calculation used in multiple regression. 

Canonical correlation differs from multiple regression in that it does not deal with a single de-

pendent variable but instead with a composite of the dependent variables, and this composite repre-

sents only a portion of each dependent variable’s total variance. For this reason, we cannot assume 

that 100 percent of the variance in the dependent variable set is available to be explained by the in-

dependent variable set. The set of independent variables can be expected to account only for the 

shared variance in the dependent canonical variate. As we will discuss later the amount explained is 

not symmetrical between variates and one variate may explain more of the other variate than vice 

versa. 

Although we will demonstrate how to calculate the redundancy index in a later section, the re-

sults for our example show that the first canonical variate of the independent variables relating to 



consumer characteristics explains 44 percent of the variance in the variate for the dependent varia-

bles. Likewise, the first variate for the dependent variables (Credit Card Usage) explains 38 percent 

of the consumer characteristics variate (independent variables). 

Estimating a Second Canonical Function 

In this example, canonical correlation analysis estimated a second statistically significant canonical 

function (lower portion of Figure S1-3). This second canonical function represents a second unique 

and independent relationship between the dependent and independent variables. Note that the same 

variables (independent and dependent) are included in each variate, but the loadings differ from the 

first canonical function, thus giving each variate a different “meaning” based on the variables with 

the highest canonical loadings. The second set of variates was characterized on the variate of inde-

pendent variables by a high canonical loading on credit history, whereas the variate of dependent 

variables is characterized by a high canonical loading on outstanding balance. This result might be 

interpreted as usage of credit cards for cash advances. When combined with the relationship for the 

first variate, this suggests that consumers’ credit card usage might be explained by their need for 

both convenience and cash. 

The canonical correlation coefficient of the second canonical correlation coefficient is 0.83, 

which corresponds to a canonical root is 0.69. Calculation of the redundancy index shows that the 

variate for the consumer characteristics (independent variables) explains 31 percent of the credit 

card usage variate. Conversely, the second credit card usage variate explains 28 percent of the con-

sumer characteristics variate. Because the two functions are independent, the explained variance for 

the two functions can be added. This means that in total consumer characteristics explain over 70 

percent of the variance in the dependent variables (credit card usage), whereas the credit card usage 

variables explain a total of 66 percent of the variance in consumer characteristics. 

 



RELATIONSHIPS OF CANONICAL CORRELATION ANALYSIS TO 

OTHER MULTIVARIATE TECHNIQUES 

Canonical correlation analysis is the most generalized member of the family of multivariate statistical 

techniques. It is directly related to several dependence methods. Chapter 4 discussed multiple regres-

sion analysis, which can predict the value of a single metric dependent variable from a linear func-

tion of a set of independent variables. Similar to regression, the goal of canonical correlation is to 

quantify the strength of the relationship, in this case between the two sets of variables (independent 

and dependent). Whereas multiple regression predicts a single dependent variable from a set of mul-

tiple independent variables, canonical correlation simultaneously predicts multiple dependent varia-

bles from multiple independent variables. Canonical correlation analysis also resembles discriminant 

analysis in its ability to determine independent dimensions (similar to discriminant functions) for 

each variable set. Discriminant analysis, which will be introduced in Chapter 7, is a method of esti-

mating the relationship between a single nonmetric dependent variable and a set of metric inde-

pendent variables. In sum, canonical correlation analysis is more general than multiple regression 

and discriminant analysis because it can handle multiple dependent variables that can be metric or 

nonmetric. 

Canonical correlation analysis is also closely related to principal components analysis, which is 

included in factor analysis [15]. Chapter 3 discussed factor analysis, the primary purpose of which is 

to define the underlying structure among the variables in the analysis. Canonical correlation analysis 

corresponds to principal components analysis and factor analysis in the creation of the optimum 

structure or dimensionality of each variable set that maximizes the relationship between independent 

and dependent variable sets. Whereas principal components analysis and factor analysis attempt to 

explain the linear relationship among a set of observed variables and an unknown number of fac-

tors/variates, canonical correlation analysis focuses more on the linear relationship between two var-



iates. As such, it is similar in purpose to PLS, a variant of structural equation modeling, which will be 

discussed in Chapter 12. 

Canonical correlation places the fewest restrictions on the types of data on which it operates 

and can be used for both metric and nonmetric data. Because the other techniques impose more 

rigid restrictions, it is generally believed that the information obtained from them is more robust sta-

tistically and may be presented in a more interpretable manner. But in situations with multiple de-

pendent and independent variables, canonical correlation is the most appropriate and powerful mul-

tivariate technique. It has gained acceptance in many fields and represents a useful tool for multivar-

iate analysis, particularly with the expanding interest in considering relationships between multiple 

dependent variables. 

Our discussion of canonical correlation analysis is organized around the model-building pro-

cess described in Chapter 1. Figure S1-4 (stages 1–3) and Figure S1-5 (stages 4–6) depict the stages 

for canonical correlation analysis, which include (1) specifying the objectives of canonical correla-

tion, (2) developing the analysis plan, (3) assessing the assumptions underlying canonical correlation, 

(4) estimating the canonical model and assessing overall model fit, (5) interpreting the canonical var-

iates, and (6) validating the model. 

 

STAGE 1: OBJECTIVES OF CANONICAL CORRELATION ANALYSIS 

As noted earlier, canonical correlation analysis examines the relationships between two sets of varia-

bles. Although it places the least number of restrictions on the types of data that can be used, this 

can also increase the difficulty in interpreting the solutions. Therefore, it is especially important to 

have clearly defined objectives before using the method. In order to reassure that canonical correla-

tion analysis is appropriately applied, the researcher needs to consider two issues: (1) selection of 

variable sets and (2) evaluation of research objectives. 



 

 

 

 

 

 

 

 

 

 

 

Selection of Variable Sets 

The appropriate data for canonical correlation analysis are two sets of variables. Each set needs to 

be given theoretical meaning for why the variables are being treated together, at least to the extent 

that one set could be defined as the independent variables and the other as the dependent variables. 

Canonical correlation analysis solutions are sensitive to the changes of variables from one set to 

another. The results of canonical correlation analysis are derived both from correlations among vari-

ables in each set and correlations between canonical variates. Therefore, changing the variables in 

one variate can noticeably change the composition of the other canonical variate. 

Evaluating Research Objectives 

Once the theoretical justification has been made for the combination of variables, canonical correla-

tion can address a wide range of objectives. The objectives are usually exploratory and may include 

FIGURE S1-4 Stages 1–3 in the Canonical Correlation Analysis Decision Diagram 



any or all of the following: 

• Determining whether two sets of variables (measurements made on the same objects) are inde-

pendent of one another or, conversely, determining the magnitude of the relationships that 

may exist between the two sets. 

• Deriving a set of weights for each set of dependent and independent variables so that the linear 

combinations of each set are maximally correlated. Additional linear functions that maximize 

the remaining correlation are independent of the preceding set(s) of linear combinations. 

• Explaining the nature of whatever relationships exist between the sets of dependent and inde-

pendent variables, generally by measuring the relative contribution of each variable to the ca-

nonical functions (relationships) that are extracted. 

Canonical correlation coefficients can be used to address the first research objective and canonical 

factor loadings are appropriate for the second objective. The redundancy index and proportion of 

variance explained is used for the third objective. These indices, especially the redundancy index and 

proportion of variance, will be discussed more in stage 4. 

The inherent flexibility of canonical correlation in terms of the number and types of variables 

handled, both dependent and independent, makes it a logical alternative to consider for many of the 

more complex problems addressed with multivariate techniques. 

 

STAGE 2: DESIGNING A CANONICAL CORRELATION ANALYSIS 

As the most general form of multivariate analysis, canonical correlation analysis shares basic imple-

mentation issues common to all multivariate techniques. Some principal features that are discussed 

in other chapters (particularly multiple regression, discriminant analysis, and factor analysis) are also 

relevant to canonical correlation analysis. These include (1) appropriate sample size, (2) variables and 

their conceptual linkage, and (3) absence of missing data and outliers. 



Sample Size 

Issues related the impact of sample size (both small and large) and the necessity for a sufficient 

number of observations per variable are frequently encountered with canonical correlation. Re-

searchers are tempted to include many variables in both the independent and dependent variable set, 

not realizing the implications for sample size. Sample sizes that are very small will not represent the 

correlations well, thus obscuring meaningful relationships. Very large samples have a tendency to 

result in statistical significance in all instances, even where practical significance is not indicated. The 

appropriate sample size is related to the reliability of the variables (see Chapter 3 for a more detailed 

discussion). Different disciplines have different expectations regarding reliability but for social sci-

ence and business researchers reliability is generally expected to be .7 or higher, and they are encour-

aged to maintain at least 10 observations per independent variable to avoid “overfitting” the data. 

For exploratory studies, however, these requirements may be relaxed somewhat. 

Variables and Their Conceptual Linkage 

Canonical correlation analysis is the most liberal form of multivariate analysis in that both metric 

and nonmetric variables can be included in the latent variables. The classification of variates as de-

pendent or independent is of little importance for the statistical estimation of the canonical func-

tions, however, because the method calculates weights for both variates to maximize the correlation 

and places no particular emphasis on either variate. Yet because the technique produces variates to 

maximize the correlation between them, a variable in either set relates to all other variables in both 

sets. The result is that the addition or deletion of a single variable may affect the entire solution, par-

ticularly the other variate. The composition of each variate, either independent or dependent, thus 

becomes critical. Researchers must have conceptually linked the sets of variables before applying 

canonical correlation analysis. This makes the specification of dependent versus independent vari-

ates essential to establishing a strong conceptual foundation for the variables. 



Missing Data and Outliers 

Canonical correlation analysis is sensitive to changes in the data set. Therefore, different procedures 

for handling missing data can create substantial changes in canonical solutions [11]. Similarly, outli-

ers can also substantially impact canonical analysis results. Missing data can be replaced by estimat-

ing values or removing cases with missing data. Outliers can be detected by univariate, bivariate, and 

multivariate diagnostic methods. Consult Chapter 2 for more details on these issues. 

 

STAGE 3: ASSUMPTIONS IN CANONICAL CORRELATION 

The generality of canonical correlation analysis also extends to its underlying statistical assumptions. 

Even though some assumptions are not strictly required, interpretability of canonical solutions is 

enhanced if they are. Readers unfamiliar with these statistical assumptions, the tests for their diagno-

sis, or the alternative remedies when the assumptions are not met should refer to Chapter 2. The 

following section discusses some essential assumptions and their impact on canonical correlation 

analysis. 

Linearity 

Linearity is important to canonical correlation analysis and it affects two aspects of canonical corre-

lation results. First, the canonical correlation coefficient between the pair of variates is based on a 

linear relationship. If the variates relate in a nonlinear manner, the relationship will not be captured 

by the canonical correlation coefficient. Second, the canonical correlation analysis maximizes the 

linear correlation between the variates. Thus, although canonical correlation analysis is the most 

generalized multivariate method, it is still constrained to identifying linear relationships. If the rela-

tionship is nonlinear, then one or both variates should be transformed, if possible. 

If the relationship is nonlinear, procedures are available to assess nonlinear canonical correla-

tion (e.g., OVERALS in SPSS). When using this technique, the variables can be numerical, ordinal, 



and nominal, and there can be more than two sets of variables. Nonlinear canonical correlation 

analysis is beyond the scope of this book. Readers interested in this topic can acquire more infor-

mation from van der Burg et al. (1994). 

Normality 

Canonical correlation analysis can accommodate any metric variable without the strict assumption of 

normality. However, normality is desirable because it allows for the highest correlation among the 

variables. Indeed, canonical correlation analysis can accommodate nonnormal variables if the distri-

butional form (e.g., highly skewed) does not decrease the correlation with other variables. This al-

lows for transformed nonmetric data (in the form of dummy variables) to be used as well. However, 

multivariate normality is required for the statistical inference test of the significance of each canoni-

cal function. Because tests for multivariate normality are not readily available, the prevailing guide-

line is to ensure that each variable has univariate normality. Thus, although normality is not strictly 

required, it is highly recommended that all variables be evaluated for normality and transformed if 

possible. 

Homoscedasticity and Multicollinearity 

Canonical correlation analysis best portrays the relationships when they are homoscedastic. Homo-

scedasticity is important because the opposite, heteroscedasticity, decreases the correlation between 

variables. Similarly, multicollinearity should be dealt with as well. Multicollinearity occurs when two 

or more variables are highly correlated. Multicollinearity among either variable set will confound the 

ability of the technique to isolate the impact of any single variable, making interpretation less relia-

ble. 

 

 

 



RULES OF THUMB S1-1 

Canonical Correlation Analysis Design 

• A strong conceptual foundation is needed to specify the sets of independent and dependent varia-

bles 

• Variables can be either metric or nonmetric 

• The acceptable sample size is at least 10 cases per measured variable, except for exploratory re-

search 

• As with all other multivariate methods, the essential assumptions including linearity, normality, 

homoscedasticity, and multicollinearity should be met or remedied 

 

STAGE 4: DERIVING THE CANONICAL FUNCTIONS AND ASSESSING 

OVERALL FIT 

Once the selection of variables has been justified and the data have been examined, the next step of 

canonical correlation analysis is to derive one or more canonical functions (Figure S1-5). Each func-

tion consists of a pair of variates—one representing the independent variables and the other repre-

senting the dependent variables. The maximum number of canonical variates (functions) that can be 

extracted from the sets of variables equals the number of variables in the smallest variable set, either 

independent or dependent. For example, when the research problem involves five independent vari-

ables and three dependent variables, the maximum number of canonical functions that can be ex-

tracted is three. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deriving Canonical Functions 

The derivation of successive canonical variates is similar to the procedure used with unrotated factor 

analysis (see Chapter 3). The first canonical function that is extracted accounts for the maximum 

amount of variance in the set of variables. The second function is then computed so that it accounts 

for as much as possible of the variance not accounted for by the first function, and so forth, until all 

functions have been extracted. Therefore, successive functions are derived from residual or leftover 

variance from earlier functions. Canonical correlation analysis follows a procedure similar to factor 

analysis but focuses on accounting for the maximum amount of the relationship between the two 

sets of variables, rather than within a single set (e.g., a single factor). The result is that the first pair 

FIGURE S1-5  Stages 4–6 in the Canonical Correlation Analysis Decision Diagram 

 



of canonical variates is derived so as to have the highest intercorrelation possible between the two 

variates. The second pair of canonical variates is then derived so that it exhibits the maximum rela-

tionship between the two sets of variables (variates) not accounted for by the first pair of variates. In 

short, successive canonical functions estimate pairs of canonical variates based on residual variance 

from the previous canonical functions, and their respective canonical correlations (which reflect the 

interrelationships between the variates) become smaller as each additional function is extracted. That 

is, the first pair of canonical variates exhibits the highest intercorrelation, the next pair the second-

highest correlation, and so forth. 

Because canonical correlation analysis is closely linked with principal components analysis, ro-

tation of canonical variates can be considered as an aid to increase the interpretability of canonical 

results. Rotation does not change the sums of the squared canonical correlation coefficients but it 

will lead to a simpler structure. As noted, successive pairs of canonical variates are based on residual 

variance. Therefore, each pair of variates is orthogonal and independent of all other variates derived 

from the same set of data. The selection of rotation methods is therefore limited to those that are 

orthogonal and Varimax rotation is the most obvious choice given the close relationship between 

canonical correlation analysis and principal components analysis [15]. Rotation is only possible when 

there are at least two canonical functions. It is available in some computer programs, including SPSS 

and Statit. However, some researchers do not recommend rotation for canonical correlation analysis 

for two reasons [13]. First, rotation can reduce the optimality of the canonical correlations when 

each pair of canonical variates is derived to maximize their correlation. Second, rotation introduces 

correlations among succeeding canonical variates. Therefore, even though rotation may increase the 

interpretability of the canonical results, this gain may be offset by the increased complexity due to 

interrelationships among the pairs of canonical variates. Researchers therefore need to be careful 

when using rotation for canonical correlation analysis. 



Which Canonical Functions Should Be Interpreted? 

As with other statistical techniques, the most common practice is to analyze functions whose canon-

ical correlation coefficients are statistically significant beyond some level, typically .05 or less. Ca-

nonical functions deemed nonsignificant are not interpreted. Interpretation of the canonical variates 

in a significant function is based on the premise that variables in each set that contribute heavily to 

shared variances for these functions are considered to be related to each other. 

The authors believe that the use of a single criterion, such as the level of significance, is too su-

perficial. Instead, we recommend that three criteria be used in conjunction with one another to de-

cide which canonical functions should be interpreted. The three criteria are (1) level of statistical sig-

nificance of the function, (2) magnitude of the canonical correlation, and (3) redundancy measure 

for the percentage of variance accounted for from the two data sets. 

LEVEL OF SIGNIFICANCE  The level of significance of a canonical correlation generally con-

sidered to be the minimum acceptable for interpretation is the .05 level, which (along with the .01 

level) has become the generally accepted level for considering a correlation coefficient statistically 

significant. This consensus has developed largely because of the availability of tables for these levels. 

These levels are not necessarily required in all situations, however, and researchers from various dis-

ciplines frequently must rely on results based on lower levels of significance. The most widely used 

test, and the one normally provided by computer packages, is the F-statistic, based on Rao’s approx-

imation [5]. 

In addition to separate tests of each canonical function, a multivariate test of all canonical roots 

can also be used to evaluate the significance of canonical roots. Many of the measures for assessing 

the significance of discriminant functions, including Wilks’ lambda, Hotelling’s trace, Pillai’s trace, 

and Roy’s gcr, are also provided. See Chapter 8 for a discussion of these measures. 

MAGNITUDE OF THE CANONICAL RELATIONSHIPS  The practical significance of the 



canonical functions, represented by the size of the canonical correlations, also should be considered 

when deciding which functions to interpret. No generally accepted guidelines have been established 

regarding suitable sizes for canonical correlations. Rather, the decision is usually based on the con-

tribution of the findings to better understanding of the research problem being studied. It seems log-

ical that the guidelines suggested for significant factor loadings (see Chapter 3) might be useful with 

canonical correlations, particularly when one considers that canonical correlations refer to the vari-

ance explained in the canonical variates not the original variables. 

REDUNDANCY MEASURE OF SHARED VARIANCE  Recall that squared canonical corre-

lations (canonical roots) provide an estimate of the shared variance between the canonical variates. 

Although this is a simple and appealing measure of the shared variance, it may lead to some misin-

terpretation because the squared canonical correlations represent the variance shared by the linear 

composites of the sets of dependent and independent variables, not the variance extracted from the 

sets of variables [1]. Thus, a relatively strong canonical correlation may be obtained between two 

linear composites (canonical variates), even though these linear composites may not extract signifi-

cant portions of variance from their respective sets of variables. 

Canonical correlations may be obtained that are considerably larger than previously reported 

bivariate and multiple correlation coefficients. Thus, there may be a temptation to assume that ca-

nonical analysis has uncovered substantial relationships of conceptual and practical significance. Be-

fore such conclusions are warranted, however, further analysis involving measures other than canon-

ical correlations must be undertaken to determine the amount of the dependent variable variance 

accounted for or shared with the independent variables [10]. 

To overcome the inherent bias and uncertainty in using canonical roots (squared canonical cor-

relations) as a measure of shared variance, a redundancy index has been proposed [14]. It is the 

equivalent of computing the squared multiple correlation coefficient between the total independent 



variable set and each variable in the dependent variable set, and then averaging these squared coeffi-

cients to arrive at an average R2. This index provides a summary measure of the ability of a set of 

independent variables (taken as a set) to explain variation in the dependent variables (taken one at a 

time). As such, the redundancy measure is analogous to multiple regression’s R2 statistic, and its val-

ue as an index is similar. 

Calculation of the redundancy index is a three-step process. The first step involves calculating 

the amount of shared variance from the set of dependent variables included in the dependent ca-

nonical variate. The second step involves calculating the amount of variance in the dependent ca-

nonical variate that can be explained by the independent canonical variate. The final step is to calcu-

late the redundancy index, which is determined by multiplying these two components. 

Step 1: The Amount of Shared Variance. To calculate the amount of shared variance in a variable 

set included in its canonical variate, let’s first consider how the regression R2 statistic is calculated. R2 

is the square of the correlation coefficient R, which represents the correlation between the depend-

ent variable and the predicted value. In the canonical case, we are concerned with correlation be-

tween the canonical variate and each of its variables. This information can be obtained from the ca-

nonical loadings (LXi or LYi), which represent the correlation between each variable and its own ca-

nonical variate. By squaring each of the canonical loadings (Li
2), one obtains a measure of the 

amount of variation in each of the variables explained by the canonical variate. To calculate the 

amount of shared variance explained by the canonical variate, an average of the squared loadings is 

used: 
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Thus, the amount of shared variance explained by a set of variables by a canonical variate of the set is the sum of the 

squared loadings divided by the number of variables in the set. 

From our earlier example of credit card usage, the amount of shared variance for the first and 

the second canonical variates of independent variables can be calculated as: 
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Likewise, the amount of shared variance for the first and the second canonical variates of dependent 

variables is: 
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The first canonical variate explains 45 percent of the variance in consumer characteristics and the 

second canonical variate explains 40 percent. Together, the two canonical variates explain nearly 100 

percent of the variance in consumer characteristics. For the credit card usage variables, the first ca-

nonical variate explains 52 percent of the variance and the second canonical variate explains 45 per-

cent. When summing the two variates, almost 100 percent of variance in credit card usage is ex-

plained by the two canonical variates. 



Step 2: The Amount of Explained Variance. The second step in calculating redundancy involves an 

estimate of the account of shared variance between the dependent and independent variates; namely, 

the canonical root. This is the squared correlation between the independent canonical variate and 

the dependent canonical variate. Recall that in our example the first pair of canonical variates had a 

canonical root of 85 percent and the second canonical root was 69 percent. 

Step 3: The Redundancy Index. The redundancy index of a variate is then derived by multiplying 

the two components (shared variance of the variate multiplied by the squared canonical correlation) 

to find the amount of shared variance explained by the opposite variate. To have a high redundancy 

index, one must have a high canonical correlation and a high degree of shared variance explained by 

its own variate. A high canonical correlation alone does not ensure a valuable canonical function. 

Redundancy indices are calculated for both the dependent and the independent variates, although in 

most instances the researcher is concerned only with the variance extracted from the dependent var-

iable set, which provides a much more realistic measure of the predictive ability of canonical rela-

tionships. The researcher should note that although the canonical correlation is the same for both 

variates in the canonical function, the redundancy index will most likely vary between the two vari-

ates, because each will have a differing amount of shared variance: 

  RI  SV  Rc2  

The redundancy index of a canonical variate is the percentage of variance explained by its own set of 

variables multiplied by the squared canonical correlation for the pair of variates. Thus, in our exam-

ple, the redundancy indices for the independent variables explaining the dependent variables are: 
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The amounts of variance of the independent variables, explained by the dependent variables for the 



two functions, are: 
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That is, the first canonical variate for Consumer Characteristics explains 44 percent of the variance 

in Credit Card Usage and the second canonical variate explains 31 percent. Together they explain 

over 70 percent of the variance in the dependent variables. The first and the second canonical vari-

ates for Credit Card Usage explain 38 percent and 28 percent of the variance in Consumer Charac-

teristics, respectively. Together they explain 66 percent of the variance in Consumer Characteristics. 

What is the minimum acceptable redundancy index needed to justify the interpretation of ca-

nonical functions? Just as with canonical correlations, no generally accepted guidelines have been 

established. The researcher must judge each canonical function in light of its theoretical and practi-

cal significance to the research problem being investigated to determine whether the redundancy 

index is sufficient to justify interpretation. A test for the significance of the redundancy index has 

been developed [2], although it has not been widely utilized. 

RULES OF THUMB S1-2 

Choosing and Assessing Canonical Functions 

• More than one canonical function can be derived, depending on the number of independent or 

dependent variables included 

• The first function has the highest intercorrelation between the variates, the second function has 

the second-highest, and so forth 

• Orthogonal rotation methods (e.g., Varimax) can increase the interpretability of canonical results, 

but it can also distort the fundamental logic of the method 

• The canonical functions can be interpreted based on: 



• Their level of statistical significance 

• The size of the canonical correlation 

• The magnitude of the redundancy index 

• The indices used varies based on the aims of the research problem and the guidelines within each 

discipline 

• Canonical correlations can be judged by the same guidelines as factor loadings 

• Theoretical and practical significance are more important than statistical significance in determin-

ing the minimum acceptable redundancy index 

 

STAGE 5: INTERPRETING THE CANONICAL VARIATE 

If the canonical relationship is statistically significant and the magnitudes of the canonical root and 

the redundancy index are acceptable, the researcher still needs to make substantive interpretations of 

the results. Making these interpretations involves examining the canonical functions to determine 

the relative importance of each of the original variables in the canonical relationships. Three meth-

ods have been proposed: (1) canonical weights (standardized coefficients), (2) canonical loadings 

(structure correlations), and (3) canonical cross-loadings. 

Canonical Weights 

The traditional approach to interpreting canonical functions involves examining the sign and the 

magnitude of the canonical weight assigned to each variable in its canonical variate. Variables with 

relatively larger weights contribute more to the variates, and vice versa. Similarly, variables whose 

weights have opposite signs exhibit an inverse relationship with each other, and variables with 

weights of the same sign exhibit a direct relationship. However, interpreting the relative importance 

or contribution of a variable by its canonical weight is subject to the same criticisms associated with 



the interpretation of beta weights in regression techniques. For example, a small weight may mean 

either that its corresponding variable is irrelevant in determining a relationship or that it has been 

partialed out of the relationship because of a high degree of multicollinearity. Another problem with 

the use of canonical weights is that these weights are subject to considerable instability (variability) 

from one sample to another. This instability occurs because the computational procedure for canon-

ical analysis yields weights that maximize the canonical correlations for a particular sample of ob-

served dependent and independent variable sets [10]. These problems suggest considerable caution 

in using canonical weights to interpret the results of a canonical analysis. 

Canonical Loadings 

Canonical loadings have been increasingly used as a basis for interpretation because of the deficien-

cies inherent in canonical weights. Canonical loadings, also called canonical structure correlations, 

measure the simple linear correlation between an original variable in the dependent or independent 

set and the set’s canonical variate. The canonical loading reflects the variance that the observed vari-

able shares with the canonical variate and can be interpreted like a factor loading in assessing the 

relative contribution of each variable to each canonical function. The approach considers each inde-

pendent canonical function separately and computes the within-set variable-to-variate correlation. 

The larger the coefficient, the more important it is in deriving the canonical variate. Also, the criteria 

for determining the significance of canonical structure correlations are the same as with factor load-

ings (see Chapter 3). 

Canonical loadings, like weights, may be subject to considerable variability from one sample to 

another. This variability suggests that loadings, and hence the relationships ascribed to them, may be 

sample-specific, resulting from chance or extraneous factors [8]. Also, when using only canonical 

loadings for interpretation the risks increase that the application is closer to a univariate setting than 

to a multivariate one [13]. Although canonical loadings are considered relatively more valid than 



weights as a means of interpreting the nature of canonical relationships, the researcher must be cau-

tious when using loadings for interpreting canonical relationships, particularly with regard to the ex-

ternal validity of the findings. 

Canonical Cross-Loadings 

The computation of canonical cross-loadings has been suggested as an alternative to canonical 

loadings [7]. This procedure involves correlating each of the variables directly with the other canoni-

cal variate, and vice versa. For example, each dependent variable would be correlated separately with 

the variate for the independent variables. Recall that conventional loadings correlate the variables 

with their respective variates after the two canonical variates (dependent and independent) are max-

imally correlated with each other. This may also seem similar to multiple regression, but it differs in 

that each independent variable, for example, is correlated with the dependent variate instead of a 

single dependent variable. Thus cross-loadings provide a more direct measure of the dependent–

independent variable relationships by eliminating an intermediate step involved in conventional 

loadings. Some canonical analyses do not compute correlations between the variables and the vari-

ates. In such cases, the canonical weights are considered comparable but not equivalent for purposes 

of our discussion. The cross-loadings can be expressed as: 
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Thus, each canonical cross-loading is equal to the product of canonical correlation coefficient for 

the nth canonical function and the canonical loading of the corresponding variable. 

Which Interpretation Approach to Use 

Several different methods for interpreting the nature of canonical relationships have been discussed. 

The question remains, however: Which method should the researcher use? Most often the research-

er is constrained to the method(s) available in the statistical package being used. Canonical weights 

perform well in the multivariate setting because they adjust when the combination of the variable 

sets change [13]. However, they are valid only when collinearity is minimal. The canonical-loadings 

approach is somewhat more representative than the use of weights, as was seen with factor analysis 

and discriminant analysis. Cross-loadings and loadings are based on a linear relationship and thus 

have corresponding results. But cross-loadings facilitate the transformation of a canonical model to 

a single latent construct which resembles Structural Equation Modeling [4]. Therefore, the cross-

loadings approach is preferred and whenever possible the loadings approach is recommended as the 

best alternative to the canonical cross-loading method. Cross-loadings are provided by many com-

puter programs, but if the cross-loadings are not available, the researcher is forced either to compute 

the cross-loadings by hand or to rely on the interpretation of canonical loadings. 

 

STAGE 6: VALIDATION AND DIAGNOSIS 

As with other multivariate techniques, canonical correlation analysis should be subjected to valida-

tion methods to ensure that the results are specific not only to the sample data but can be general-

ized to the population. The most direct procedure is to create two subsamples of the data (if sample 



size allows) and perform the analysis on each subsample separately. Then the results can be com-

pared for similarity of canonical functions, variate loadings, and the like. If marked differences are 

found, the researcher should consider additional investigation to ensure that the final results are rep-

resentative of the population values, not solely those of a single sample. 

Another approach is to assess the sensitivity of the results to the removal of a dependent 

and/or independent variable. Because the canonical correlation procedure maximizes the correlation 

and does not optimize the interpretability, the canonical weights and loadings may vary substantially 

if one variable is removed from either variate. To ensure the stability of the canonical weights and 

loadings, the researcher should estimate multiple canonical correlations, each time removing a dif-

ferent independent or dependent variable. 

RULES OF THUMB S1-3 

Interpreting and Validating Canonical Variates 

• Canonical cross-loadings are preferred over canonical weights and canonical loadings when inter-

preting the results. 

• If possible, the data should be split randomly into two subgroups, running canonical correlation 

analysis separately and comparing the results, in order to ensure the validity of the canonical solu-

tion. 

Although few diagnostic procedures have been developed specifically for canonical correlation 

analysis, the researcher should view the results within the limitations of the technique. Among the 

limitations that can have the greatest impact on the results and their interpretation are the following: 

 1. The canonical correlation reflects the variance shared by the linear composites of the sets of 

variables, not the variance extracted from the variables. 

 2. Canonical weights derived in computing canonical functions are subject to a great deal of in-

stability. 



 3. Canonical weights are derived to maximize the correlation between linear composites, not the 

variance extracted. 

 4. The interpretation of the canonical variates may be difficult, because they are calculated to 

maximize the relationship, and aids for interpretation, such as rotation of variates in factor 

analysis, are limited. 

 5. It is difficult to identify meaningful relationships between the subsets of independent and de-

pendent variables because precise statistics have not yet been developed to interpret canonical 

analysis, and we must rely on inadequate measures such as loadings or cross-loadings [10]. 

These limitations are not meant to discourage the use of canonical correlation. Rather, they are 

pointed out to enhance the effectiveness of canonical correlation as a research tool. 

 

AN ILLUSTRATIVE EXAMPLE 

To illustrate the application of canonical correlation, we use variables drawn from the HBAT data-

base introduced in Chapter 1. Recall that the data consisted of a series of measures obtained on 

samples of HBAT customers. For this example, we chose the sample involving 200 customers 

(HBAT_200). The variables included ratings of HBAT on five measures of basic firm characteristics 

and respondents’ business relationship with HBAT (X1 to X5), 13 indicators reflecting perceptions 

of HBAT (X6 to X18), and five indicators of purchase outcome (X19 to X23). SPSS and Statit are used 

in the design and analysis of this example. Comparable results are obtained with other statistical 

programs available for commercial and academic use. The syntax and dataset of canonical correla-

tion analysis is available on the text’s Web sites accessed through cengagebrain.co.uk or 

www.mvstats.com. 

As with previous chapters, discussion of this application of canonical correlation analysis fol-

lows the six-stage process described earlier in the chapter. At each stage, the results illustrating the 



decisions in that stage are examined. 

 

STAGE 1: OBJECTIVES OF CANONICAL CORRELATION ANALYSIS 

In demonstrating the application of canonical correlation, 13 indicators of perceptions and 2 indica-

tors of customers’ likelihood to do business with HBAT are used as input data. Both dependent and 

independent variables were assessed for meeting the basic assumptions underlying multivariate anal-

yses. Among them, X14 and X18 are highly correlated with other variables. They are thus removed 

from the analysis due to their violation of multicollinearity. The HBAT ratings (X6 to X13 and X15 to 

X17) are designated as the set of independent variables. The set of dependent variables is defined as 

two variables—the likelihood of recommending HBAT and future purchases from HBAT (X20 and 

X21). The statistical problem involves identifying any relationships between the variates formed for 

customer perceptions of HBAT and the likelihood of doing business with HBAT in the future. This 

canonical model is illustrated in Figure S1-6. 

Stages 2 and 3: Designing a Canonical Correlation Analysis and Testing the Assump-

tions 

The designation of the variables includes two metric-dependent and 11 metric-independent varia-

bles. The 11 variables resulted in an 18-to-1 ratio of observations to variables, exceeding the guide-

line of 10 observations per independent variable. The HBAT data set with 200 observations was 

used in this example. The sample size of 200 should not affect the estimates of sampling error mark-

edly and thus should not impact the statistical significance of the results. 

Stage 4: Deriving the Canonical Functions and Assessing Overall Fit 

The canonical correlation analysis was restricted to deriving two canonical functions because the 

dependent variable set contained only two indicators. To determine the number of canonical func-

tions to include in the interpretation stage, the analysis focused on the level of statistical significance, 



the practical significance of the canonical correlation, and the redundancy indices for each variate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

STATISTICAL AND PRACTICAL SIGNIFICANCE  The first statistical significance test is for 

the canonical correlations of each of the two canonical functions. In this example, only the first ca-

nonical correlation is statistically significant (see Table S1-1). In addition to tests of each canonical 

function separately, multivariate tests of both functions were performed simultaneously. The test 

statistics employed included Wilks’ lambda, Pillai’s criterion, Hotelling’s trace, and Roy’s gcr. Table 

S1-1 also details the multivariate test statistics, which all indicate that the first canonical function, 

taken collectively, is statistically significant at the .01 level; the second canonical function fails to 

achieve significance level at the .05 level. 

 

FIGURE S1-6  Canonical Correlation of Likelihood for Future Business with HBAT 

and Customer’s Perception of HBAT 

 



TABLE S1-1  Canonical Correlation Analysis Relating Perceptions of HBAT to Likelihood 

to Do Business with HBAT 

Measures of Overall Model Fit for Canonical Correlation Analysis 

Canonical Function Canonical Correlation Canonical R2 F Statistics Probability 

1 .765 .585 9.956 .000 

2 .203 .041 .807 .622 

Multivariate Tests of Significance 

Statistic Value Approximate F Statistic Probability 

Wilks’ lambda .398 9.956 .000 

Pillai’s trace .626 7.793 .000 

Hotelling’s trace 1.454 12.291 .000 

Roy’s gcr .585     

 

In addition to statistical significance, the canonical correlations show that only the first func-

tion is of sufficient size to be deemed practically significant. Because rotation is available only when 

there are at least two functions, rotation is not performed in this example. 

REDUNDANCY ANALYSIS  A redundancy index is calculated for the independent and depend-

ent variates of the first function in Table S1-2. As can be seen, the redundancy index for the de-

pendent variate is substantial (.484). The independent variate, however, has a markedly lower redun-

dancy index (.119), although in this case, because there is a clear delineation between dependent and 

independent variables, this lower value is not unexpected or problematic. The low redundancy of 

the independent variate results from the relatively low shared variance in the independent variate 

(.204), not the canonical R2. From the redundancy analysis and the statistical significance tests, the 

first function should be accepted. 



The interested researcher should review Chapter 3, with attention to the discussion of scale de-

velopment. Canonical correlation is in some ways a form of scale development, because the depend-

ent and independent variates represent dimensions of the variable sets, similar to the scales devel-

oped with factor analysis. The primary difference is that these dimensions are developed to maxim-

ize the relationship between them, whereas factor analysis maximizes the explanation (shared vari-

ance) of the variable set. 

Stage 5: Interpreting the Canonical Variates 

With the canonical relationship deemed statistically significant and the magnitude of the canonical 

root and the redundancy index acceptable, the researcher proceeds to making substantive interpreta-

tions of the results. Because the second function is considered statistically nonsignificant, it is ex-

cluded from further analysis and the interpretation phase. These interpretations involve examining 

the canonical function to determine the relative importance of each of the original variables in deriv-

ing the canonical relationships. The three methods for interpretation are (1) canonical weights 

(standardized coefficients), (2) canonical loadings (structure correlations), and (3) canonical cross- 

loadings. 

TABLE S1-2  Calculation of the Redundancy Indices for the First Canonical Function 

Variate/Variables 

Canonical 

Loading 

Canonical 

Loading 

Squared 

Average 

Loading 

Squared 

Canonical 

R2 

Redundancy 

Index 

Dependent Variables           

X20 Likelihood of Rec-

ommending HBAT 

.938 .880       

X21 Likelihood of Future .881 .776       



Purchases from 

HBAT 

Dependent Variate   1.656 .827 .585 .484 

Independent Variables           

X6  Product Quality .622 .387       

X7  E-commerce .393 .154       

X8  Technical Support .328 .108       

X9  Complaint Resolu-

tion 

.605 .366       

X10 Advertising .336 .113       

X11 Product Line .661 .437       

X12 Salesforce Image .524 .275       

X13 Competitive Pricing -.291 .085       

X15 New Products .150 .023       

X16 Ordering and Billing .540 .292       

X17 Pricing Flexibility .036 .001       

Independent Variate   2.239 .204 .585 .119 

CANONICAL WEIGHTS  Table S1-4 contains the standardized canonical weights for each ca-

nonical variate of both the dependent and independent variables. As discussed earlier, the magnitude 

of the weights represents their relative contribution to the variate. The four variables with the high-

est canonical weights on the independent variate are X12 (Salesforce Image), X6 (Product Quality), 

X17 (Pricing Flexibility), and X11 (Product Line). The dependent variable order on the variate is X20 

(Likelihood of Recommending), then X21 (Likelihood of Future Purchase). Recall that the weights 



obtained are typically unstable unless the collinearity among variables is minimal. In this example, X7 

with X12 and X9 with X16 do share moderately high correlation (.788 and .741, respectively). Thus, 

the interpretation based on canonical weights is likely to be biased and therefore is not recommend-

ed in this example. 

CANONICAL LOADINGS  Table S1-4 contains the canonical loadings for the dependent and 

independent variates for the first canonical function. The objective of maximizing the variates for 

the correlation between them results in variates “optimized” not for interpretation, but rather for 

prediction. This makes identification of relationships more difficult. In the first dependent variate, 

both variables have loadings exceeding .80, resulting in the high shared variance (.824). This indi-

cates a high degree of intercorrelation among the two variables and suggests that both or either 

measures are representative of customer intentions to do business with HBAT. 

The first independent variate has a quite different pattern, with loadings ranging from .036 to 

.661, with one independent variable (X13) even having a negative loading, although it is rather small 

and not of substantive interest. The four variables with the highest loadings on the independent var-

iate are X11 (Product Line), X6 (Product Quality), X9 (Complaint Resolution), and X16 (Ordering and 

Billing). This variate partly corresponds to the dimensions extracted in factor analysis (see Chapter 

3), but it would not be expected to fully match because the variates in canonical correlation are ex-

tracted only to maximize predictive objectives. As such, it should correspond more closely to the 

results from other dependence techniques. 

There is a close correspondence to the multiple regression results summarized in Chapter 4. 

Two of these variables (X6 and X11) were included in the stepwise regression analysis in which X21 

(one of the two variables in the dependent variate) was the dependent variable. Thus, the first ca-

nonical function closely corresponds to the multiple regression results, with the independent variate 

representing the set of variables best predicting the two dependent measures. The researcher should 



also perform a sensitivity analysis of the independent variate to see whether the loadings change 

when an independent variable is deleted (see stage 6). 

TABLE S1-3  Redundancy Analysis of Dependent and Independent Variates for Both Ca-

nonical Functions 

Standardized Variance of the Dependent Variables Explained by 

 Their Own Canonical Variate 

(Shared Variance) 

 The Opposite Canonical Variate 

(Redundancy) 

Canonical 

Function Percentage 

Cumulative 

Percentage Canonical R2 Percentage 

Cumulative 

Percentage 

1 .827 .827 .585 .484 .484 

Standardized Variance of the Independent Variables Explained by 

 Their Own Canonical Vari-

ate(Shared Variance) 

 The Opposite Canonical Variate 

(Redundancy) 

Canonical 

Function Percentage 

Cumulative 

Percentage Canonical R2 Percentage 

Cumulative 

Percentage 

1 .204 .204 .585 .119 .119 

 

CANONICAL CROSS-LOADINGS  Table S1-4 also includes the cross-loadings for the two ca-

nonical functions. In studying the first canonical function, we see that both dependent variables (X20 

and X21) exhibit high correlations with the independent canonical variate - .717 and .674, respective-

ly. This reflects the high shared variance between these two variables. By squaring these terms, we 

find the percentage of the variance for each of the variables explained by function 1. The results 

show that 51.4 percent of the variance in X20 and 45.4 percent of the variance in X21 is explained by 

function 1. Looking at the independent variables’ cross-loadings, we see that variables X11 and X6 



have the highest correlations with the dependent canonical variate - .506 and .476, respectively. 

From this information, approximately 25.6 percent of the variance in X11 and 22.7 percent of vari-

ance in X6 are explained by the dependent variate (the 25.6% is obtained by squaring the correlation 

coefficient, .506). 

TABLE S1-4  Canonical Weights, Loadings, and Cross-Loadings for the Canonical Function 

 

Canonical Weights Canonical Loadings 

Canonical Cross-

Loadings 

Independent Variables       

X6  Product Quality .631 .622 .476 

X7  E-commerce -.139 .393 .301 

X8  Technical Support .161 .328 .251 

X9  Complaint Resolution .026 .605 .463 

X10 Advertising -.120 .336 .257 

X11 Product Line .416 .661 .506 

X12 Salesforce Image .657 .524 .401 

X13 Competitive Pricing -.087 -.291 -.222 

X15 New Products -.013 .150 .114 

X16 Ordering and Billing -.043 .540 .413 

X17 Pricing Flexibility .421 .036 .028 

Dependent Variables       

X20 Likelihood of Recom-

mending HBAT 

.632 .938 .717 

X21 Likelihood of Future 

Purchases from HBAT 

.462 .881 .674 



The final issue of interpretation is examining the signs of the cross-loadings. All independent 

variables except X13 (Competitive Pricing) have a positive, direct relationship. The four highest 

cross-loadings of the independent variate correspond to the variables with the highest canonical 

loadings as well. Thus all the relationships are positive except for one inverse relationship (X13). 

Stage 6: Validation and Diagnosis 

The last stage should involve a validation of the canonical correlation analyses through one of sever-

al procedures. Among the available approaches would be (1) splitting the sample into estimation and 

validation samples or (2) sensitivity analysis of the independent variables set. Table S1-5 contains the 

results of a sensitivity analysis in which the canonical loadings are examined for stability when indi-

vidual independent variables are deleted from the analysis. As seen, the canonical loadings in our 

example are remarkably stable and consistent in each of the three cases where an independent varia-

ble (X6, X7, or X8) is deleted. The overall canonical correlations also remain stable. But the research-

er examining the canonical weights (not presented in the table) would find widely varying results, 

depending on which variable was deleted. This reinforces the procedure of using the canonical load-

ings and cross-loadings for interpretation purposes. 

TABLE S1-5  Sensitivity Analysis of the Canonical Correlation Results to Removal of an In-

dependent Variable 

  Results after Deletion of  

 Complete 

Variate X6 X7 X8 

Canonical correlation (R) .765 .668 .762 .756 

Canonical root (R2) .585 .447 .581 .571 

Independent Variate         



Canonical loadings         

X6  Product Quality .622 omitted .624 .630 

X7  E-commerce .393 .452 omitted .398 

X8  Technical Support .328 .376 .329 omitted 

X9  Complaint Resolution .605 .692 .607 .613 

X10 Advertising .336 .384 .337 .340 

X11 Product Line .661 .756 .663 .670 

X12 Salesforce Image .524 .601 .526 .530 

X13 Competitive Pricing -.291 -.331 -.291 -.295 

X15 New Products .150 .173 .151 .151 

X16 Ordering and Billing .540 .621 .543 .546 

X17 Pricing Flexibility .036 .043 .037 .036 

Shared variance .204 .243 .210 .219 

Redundancy .120 .109 .122 .125 

Dependent Variate         

Canonical loadings         

X20 Likelihood of Recommending 

HBAT 

.938 .944 .941 .935 

X21 Likelihood of Future Purchases 

from HBAT 

.881 .872 .876 .884 

Shared variance .827 .825 .826 .828 

Redundancy .484 .369 .480 .473 

A Managerial Overview of the Results 

The canonical correlation analysis addresses two primary objectives: (1) identification of dimensions 



among the dependent and independent variable sets and (2) maximization of the relationship be-

tween the dimensions. From a managerial perspective, this provides the researcher with insights into 

the structure of the different variable sets as they relate to a dependence relationship. First, the re-

sults indicate that only a single relationship exists, supported by the lack of statistical significance 

and low practical significance of the second canonical function. In examining this relationship, we 

first see that the two dependent variables are quite closely related and create a well-defined dimen-

sion for representing the outcomes of HBAT’s efforts. Second, this outcome dimension is fairly well 

predicted by the set of independent variables when acting as a set. The redundancy value of .484 

would be an acceptable R2 for a comparable multiple regression. When interpreting the independent 

variate, we see that three variables, X11 (Product Line), X6 (Product Quality), and X9 (Complaint 

Resolution) provide the substantive contributions and thus are the key predictors of the outcome 

dimension. These should be the focal points in the development of any strategy directed toward im-

pacting the outcomes of HBAT’s future actions. 

 

Summary 

The concept of canonical correlation analysis and a decision-making procedure for this technique 

have been introduced in this chapter. Basic guidelines for assessing the results are also included and 

an example of the application of canonical correlation analysis with the HBAT data set is presented 

to further clarify the methodological concepts. 

Describe canonical correlation analysis and understand its purpose.  Canonical correlation 

analysis is a useful and powerful technique for exploring the relationships among multiple dependent 

and independent variables. The technique is primarily descriptive, although it can be used for predic-

tive purposes. Results obtained from a canonical analysis should suggest answers to questions con-

cerning the number of ways in which the two sets of multiple variables are related, the strengths of 



the relationships, and the nature of the relationships defined. Canonical analysis enables the re-

searcher to combine into a composite measure what otherwise might be an unmanageably large 

number of bivariate correlations between sets of variables. It is useful for identifying overall relation-

ships between multiple independent and dependent variables, particularly when the researcher has 

little a priori knowledge about relationships among the sets of variables. Essentially, the researcher 

can apply canonical correlation analysis to a set of variables, select those variables (both independent 

and dependent) that appear to be significantly related, and run subsequent canonical correlations 

with the more significant variables remaining or perform individual regressions with these variables. 

State the similarities and differences between multiple regression, discriminant analysis, fac-

tor analysis, and canonical correlation.  Canonical correlation analysis is the most general form of 

the multivariate statistical techniques. It can have multiple dependent variables that can be metric or 

nonmetric. It is similar to multiple regression in that the goal of canonical correlation analysis is to 

quantify the strength of the relationships between independent variables and dependent variable(s). 

It also resembles discriminant analysis in its ability to determine independent dimensions. Like factor 

analysis, canonical correlation analysis can create an optimized structure for a set of variables. How-

ever, canonical correlation analysis is unique in that it can integrate more than one dependent varia-

ble, which is not possible with multiple regression and discriminant analysis. Factor analysis gives 

details about the linear relationship between the measured variables and latent variables, but canoni-

cal correlation focuses more on the linear relationship between a pair of canonical variates. 

Summarize the conditions that must be met for application of canonical correlation analy-

sis.   Strong theoretical support is needed for selecting and grouping variables, as well as determin-

ing the research objectives. However, it is of little importance to strictly define the latent variables 

into independent and dependent canonical variates, because the technique does not differentiate be-

tween the two sets when weighting both variates to maximize the correlation. Even though canoni-



cal correlation analysis is relatively less demanding in meeting the underlying statistical assumptions, 

interpretability is improved if the assumptions are satisfied. These include linearly, normality, homo-

scedasticity, and multicollinearity. Missing data and outliers should also be avoided. 

Define and compare canonical root measures and the redundancy index.  A canonical root is 

the squared canonical correlation coefficient. It indicates the amount of shared variance between the 

two respective optimally weighted canonical variates. It tells the researcher the proportion of vari-

ance explained in the canonical variates but it does not differentiate how much variance is explained 

in each of the two sets of variables themselves. The canonical root is the same for both variates in 

the canonical function. 

The redundancy index is the amount of variance in a canonical variate explained by the oppo-

site canonical variate in the canonical function. It reflects how well the independent canonical vari-

ate predicts values of the dependent variables. The redundancy index is similar to a regression R2—

high redundancy means high ability to predict. It suggests the ability of a set of independent varia-

bles to explain variation in the dependent variables, or vice versa. Thus, the redundancy indices are 

different for dependent and independent variates. 

Compare the advantages and disadvantages of the three methods for interpreting the nature 

of canonical functions.  The canonical function can be interpreted by the sign and the magnitude 

of the canonical weights assigned to each variable in its respective canonical variate. Variables with 

larger weights contribute more to the variates, and vice versa. Because canonical weights are derived 

to maximize the canonical correlations, they are subject to considerable instability from one sample 

to another. Also, weights may be distorted due to multicollinearity. Therefore, considerable caution 

is necessary if interpretation is based on canonical weights. 

Canonical loadings measure the correlation between the original observed variables and its ca-

nonical variate. They can be interpreted like factor loadings. Variables with larger loadings are more 



important in deriving the canonical variate. Whereas weights are more suitable for prediction, load-

ings are better at explaining underlying constructs. Canonical loadings are considered more valid and 

stable than weights. 

Canonical cross-loadings measure the correlation between the original observed variables and 

their opposite variate (i.e., independent variables correlate to the dependent variate, dependent vari-

ables correlate to the independent variate). They offer more direct interpretations by eliminating an 

intermediate step of conventional loadings. However, computation of cross-loadings is not as widely 

available as canonical loadings and weights in statistical programs. 

Questions 

 1. Under what circumstances would you select canonical correlation analysis over multiple regres-

sion as the appropriate statistical technique? 

 2. What three criteria should you use in deciding which canonical functions should be interpreted? 

Explain the role of each. 

 3. How would you interpret a canonical correlation analysis? 

 4. What is the relationship among the canonical root, the redundancy index, and multiple regres-

sion’s R2? 

 5. What are the limitations associated with canonical correlation analysis? 

 6. Why has canonical correlation analysis been used much less frequently than other multivariate 

techniques? 

Suggested Readings 

A list of suggested readings illustrating issues and applications of canonical correlation in general is 

available on the Web accessed through cengagebrain.co.uk or www.mvstats.com. 
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